Time reversal and CP invariance in Calabi-Yau compactifications

被引:3
作者
Boenisch, Kilian [1 ,2 ]
Elmi, Mohamed [3 ,4 ]
Kashani-Poor, Amir-Kian [5 ]
Klemm, Albrecht [2 ,6 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
[2] Univ Bonn, Bethe Ctr Theoret Phys, Nussallee 12, D-53115 Bonn, Germany
[3] Rutgers State Univ, NHETC, 126 Frelinghuysen Rd, Piscataway, NJ 08855 USA
[4] Rutgers State Univ, Dept Phys & Astron, 126 Frelinghuysen Rd, Piscataway, NJ 08855 USA
[5] Sorbonne Univ, Univ PSL, Univ Paris Cite, LPENS,ENS,CNRS, 24 Rue Lhomond, F-75005 Paris, France
[6] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 62, D-53115 Bonn, Germany
关键词
Flux Compactifications; Superstring Vacua; Topological Strings; YANG-MILLS THEORIES; STRING THEORY; MIRROR SYMMETRY; MANIFOLDS; SUPERMANIFOLDS; DUALITY; PERIODS;
D O I
10.1007/JHEP09(2022)019
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We revisit the question of time reversal and CP invariance in Calabi-Yau compactifications. We show that time reversal invariance is respected by quantum corrections to the prepotential. In particular, field independent theta angles whose presence is dictated by requiring integrality of relevant monodromy transformations can take precisely the quantized values compatible with time reversal invariance. Furthermore, monodromy symmetry enlarges the region on moduli space on which time reversal is not spontaneously broken. We define the action of the CP transformation for multi-parameter models and argue that on the slice of moduli space where it is defined, CP is trivially a symmetry of the theory. For supersymmetric vacua that lie in this slice, we derive a condition on the third cohomology of the compactification manifold which determines whether CP preserving fluxes exist that stabilize the moduli to such points. In the case of one-parameter models, the condition is always satisfied.
引用
收藏
页数:46
相关论文
共 57 条
  • [1] Almkvist G., MATH 0507430
  • [2] Batyrev V.V., 1994, J ALGEBRAIC GEOM, V3, P493
  • [3] A search for non-perturbative dualities of local N=2 Yang-Mills theories from Calabi-Yau 3-folds
    Billo, M
    Ceresole, A
    DAuria, R
    Ferrara, S
    Fre, P
    Regge, T
    Soriani, P
    VanProeyen, A
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (05) : 831 - 864
  • [4] Blumenhagen R., 2013, Basic concepts of string theory, DOI [10.1007/978-3-642-29497-6, DOI 10.1007/978-3-642-29497-6]
  • [5] Compactification of type IIB string theory on Calabi-Yau threefolds
    Böhm, R
    Günther, H
    Herrmann, C
    Louis, J
    [J]. NUCLEAR PHYSICS B, 2000, 569 (1-3) : 229 - 246
  • [6] Bonisch K., PERIODS QUASIPERIODS
  • [7] Bonisch K., 2020, THESIS U BONN BONN
  • [8] Moduli stabilisation and the statistics of axion physics in the landscape
    Broeckel, Igor
    Cicoli, Michele
    Maharana, Anshuman
    Singh, Kajal
    Sinha, Kuver
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (08)
  • [9] A PAIR OF CALABI-YAU MANIFOLDS AS AN EXACTLY SOLUBLE SUPERCONFORMAL THEORY
    CANDELAS, P
    DELAOSSA, XC
    GREEN, PS
    PARKES, L
    [J]. NUCLEAR PHYSICS B, 1991, 359 (01) : 21 - 74
  • [10] Candelas P, 2021, Arxiv, DOI arXiv:2104.07816