Lyapunov Conditions for One-Sided Discrete-Time Random Dynamical Systems

被引:0
作者
Biris, Larisa Elena [1 ]
Ceausu, Traian [1 ]
Popa, Ioan-Lucian [2 ,3 ]
Seimeanu, Nicolae Marian [1 ]
机构
[1] West Univ Timisoara, Dept Math, Timisoara, Romania
[2] 1 Decembrie 1918 Univ Alba Iulia, Dept Comp Math & Elect, Alba Iulia 510009, Romania
[3] Transilvania Univ Brasov, Fac Math & Comp Sci, Iuliu Maniu St 50, Brasov 500091, Romania
关键词
nonuniform exponential stability; dynamical systems; Lyapunov functions; EXPONENTIAL STABILITY;
D O I
10.37193/CJM.2022.03.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers nonuniform exponential stability and nonuniform exponential instability concepts for one-sided discrete-time random dynamical systems. These concepts are generalizations from the deterministic case. Using this, characterizations in terms of Lyapunov functions respectively Lyapunov norms are presented. Also, an approach in terms of considered concepts for the inverse and adjoint random discrete-time systems is derived.
引用
收藏
页码:777 / 788
页数:12
相关论文
共 21 条
[1]   ON THE EXPONENTIAL STABILITY OF DISCRETE-TIME-SYSTEMS WITH APPLICATIONS IN OBSERVER DESIGN [J].
AITKEN, VC ;
SCHWARTZ, HM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (09) :1959-1962
[2]  
Arnold L., 2003, Random Dynamical Systems
[3]  
Cong N.D., 1997, TOPOLOGICAL DYNAMICS
[4]  
Datko R., 1972, SIAM J MATH ANAL, V3, P428, DOI DOI 10.1137/0503042
[5]  
Doan T. S., 2009, LYAPUNOV EXPONENTS R
[6]   Input-output criteria for stability and expansiveness of dynamical systems [J].
Dragicevic, Davor ;
Sasu, Adina Luminita ;
Sasu, Bogdan .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 414
[7]   On the exponential stability and hyperbolicity of linear cocycles [J].
Dragicevic, Davor .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (02) :259-277
[8]  
Kreyszig E., 1978, INTRO FUNCTIONAL ANA
[9]   A complete characterization of exponential stability for discrete dynamics [J].
Lupa, Nicolae ;
Popescu, Liviu Horia .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (12) :2072-2092
[10]   Perron conditions for uniform exponential expansiveness of linear skew-product flows [J].
Megan, M ;
Sasu, AL ;
Sasu, B .
MONATSHEFTE FUR MATHEMATIK, 2003, 138 (02) :145-157