Anisotropic elliptic problems with natural growth terms

被引:31
作者
Di Castro, Agnese [1 ]
机构
[1] Univ Coimbra, Dept Math, CMUC, P-3001454 Coimbra, Portugal
关键词
L-INFINITY-REGULARITY; EQUATIONS; EXISTENCE; NONEXISTENCE; LOCALIZATION; BOUNDEDNESS; DEGENERATE;
D O I
10.1007/s00229-011-0431-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove existence and regularity of solutions for nonlinear anisotropic elliptic equations of the type [GRAPHICS] in a bounded, smooth, domain Omega, in R-N, with homogeneous Dirichlet boundary conditions. The right hand side f is assumed to belong to some Lebesgue space and the function g is a nonlinear lower order term.
引用
收藏
页码:521 / 543
页数:23
相关论文
共 34 条
[1]  
Alves CO, 2008, DIFFER INTEGRAL EQU, V21, P25
[2]  
[Anonymous], 1983, Res. Notes in Math.
[3]   On localization of solutions of elliptic equations with nonhomogeneous anisotropic degeneracy [J].
Antontsev, SN ;
Shmarev, SI .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (05) :765-782
[4]   Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions [J].
Antontsev, Stanislav ;
Shmarev, Sergei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :728-761
[5]  
BENSOUSSAN A, 1988, ANN I H POINCARE-AN, V5, P347
[6]   STRONGLY NONLINEAR ELLIPTIC-EQUATIONS HAVING NATURAL GROWTH TERMS AND L(1) DATA [J].
BOCCARDO, L ;
GALLOUET, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (06) :573-579
[7]  
BOCCARDO L, 1990, B UNIONE MAT ITAL, V4A, P219
[8]  
Boccardo L, 2005, PROG NONLIN, V63, P67
[9]   Existence and nonexistence of solutions for some nonlinear elliptic equations [J].
Boccardo, L ;
Gallouet, T ;
Orsina, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1997, 73 (1) :203-223
[10]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169