On low-dimensional cancellation problems

被引:2
|
作者
Belov, Alexei [2 ,3 ]
Yu, Jie-Tai [1 ]
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Univ Bremen, D-2800 Bremen 33, Germany
[3] Moscow Inst Open Educ, Moscow, Russia
关键词
cancellation conjecture of Zariski; birational cancellation problems; Luroth's theorem; good embeddings;
D O I
10.1016/j.jalgebra.2006.11.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A well-known cancellation problem of Zariski asks when, for two given domains (fields) K-1 and K-2 over a field k, a k-isomorphism of K-1[t] (K-1(t)) and K-2[t] (K-2(t)) implies a k-isomorphism of K-1 and K-2. The main results of this article give affirmative answer to the two low-dimensional cases of this problem: 1. Let K be an affine field over an algebraically closed field k of any characteristic. Suppose K(t) similar or equal to k(t(1), t(2), t(3)), then K similar or equal to k(t(1), t(2)). 2. Let M be a 3-diniensional affine algebraic variety over an algebraically closed field k of any characteristic. Let A = K[x, y, z, w]/M be the coordinate ring of M. Suppose A[t] similar or equal to k[x(1), x(2), x(3), x(4)], then frac(A) similar or equal to k (x(1), x(2), x(3)), where frac(A) is the field of fractions of A. In the case of zero characteristic these results were obtained by Kang in [Ming-chang Kang, A note on the birational cancellation problem, J. Pure Appl. Algebra 77 (1992) 141-154; Ming-chang Kang, The cancellation problem, J. Pure Appl. Algebra 47 (1987) 165-171]. However, the case of finite characteristic is first settled in this article, that answered the questions proposed by Kang in [Ming-chang Kang, A note on the birational cancellation problem, J. Pure Appl. Algebra 77 (1992) 141-154; Ming-chang Kang, The cancellation problem, J. Pure Appl. Algebra 47 (1987) 165-171]. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:2235 / 2242
页数:8
相关论文
共 50 条
  • [1] Inverse problems on low-dimensional manifolds
    Alberti, Giovanni S.
    Arroyo, Angel
    Santacesaria, Matteo
    NONLINEARITY, 2023, 36 (01) : 734 - 808
  • [2] Reachability problems in low-dimensional iterative maps
    Kurganskyy, Oleksiy
    Potapov, Igor
    Sancho-Caparrini, Fernando
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2008, 19 (04) : 935 - 951
  • [3] Solution of low-dimensional constrained model predictive control problems
    Gupta, YP
    ISA TRANSACTIONS, 2004, 43 (04) : 499 - 508
  • [4] Simulation of natural convection problems based on low-dimensional model
    Blinov, DG
    Prokopov, VG
    Sherenkovskii, YV
    Fialko, NM
    Yurchuk, V
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2002, 29 (06) : 741 - 747
  • [5] Low-dimensional topology, low-dimensional field theory and representation theory
    Fuchs, Juergen
    Schweigert, Christoph
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 255 - 267
  • [6] Low-dimensional optics
    Flory, Franois
    Escoubas, Ludovic
    Le Rouzo, Judikael
    Berginc, Gerard
    Lee, Cheng-Chung
    JOURNAL OF NANOPHOTONICS, 2015, 9
  • [7] Low-dimensional perovskites
    Bubnova, Olga
    NATURE NANOTECHNOLOGY, 2018, 13 (07) : 531 - 531
  • [8] Low-dimensional BEC
    Sevilla, FJ
    Grether, M
    Fortes, M
    de Llano, M
    Rojo, O
    Solis, MA
    Valladares, AA
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2000, 121 (5-6) : 281 - 286
  • [9] Low-dimensional BEC
    F. J. Sevilla
    M. Grether
    M. Fortes
    M. de Llano
    O. Rojo
    M. A. Solís
    A. A. Valladares
    Journal of Low Temperature Physics, 2000, 121 : 281 - 286
  • [10] Low-dimensional thermoelectrics
    Balandin, A
    PHYSICS OF LOW-DIMENSIONAL STRUCTURES, 2000, 5-6 : U1 - U1