Smart construction of three-dimensional hierarchical tubular transition metal oxide core/shell heterostructures with high-capacity and long-cycle-life lithium storage

被引:218
作者
Wang, Jiexi [1 ]
Zhang, Qiaobao [2 ]
Li, Xinhai [1 ]
Zhang, Bao [1 ]
Mai, Liqiang [3 ]
Zhang, Kaili [2 ]
机构
[1] Cent S Univ, Sch Met & Environm, Changsha 410083, Hunan, Peoples R China
[2] City Univ Hong Kong, Dept Mech & Biomed Engn, Hong Kong, Hong Kong, Peoples R China
[3] Wuhan Univ Technol, WUT Harvard Joint Nano Key Lab, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
关键词
Transition metal oxide; Nanornatenal; Tubular structure; Anode; Lithium ion battery; ANODE MATERIAL; HOLLOW NANOSTRUCTURES; ELECTRODE MATERIALS; RATE CAPABILITY; ENERGY-STORAGE; BATTERY ANODES; PERFORMANCE; ARRAYS; HYBRID; CONVERSION;
D O I
10.1016/j.nanoen.2015.01.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to realize new high performance electrodes for lithium-ion batteries (LIBs), the careful design of nanoarchitectures and effective hybridization of active materials are research areas of great interest. Here, we present a simple and highly controllable two-step fabrication technique, followed by a heat treatment process, for the large-scale in situ growth of 3D hierarchical tubular CuO/other metal oxides core/shell heterostructure arrays that are directly grown on Cu foam. As a proof-of-concept demonstration of the application of such 3D hierarchical tubular heterostructure arrays, the prepared tubular CuO/CoO core/shell arrays are investigated as binder- and conductive agent-free anodes for LIBs, exhibiting an impressive capacity of 1364 mAh g(-1) at a current density of 100 mA g(-1) after 50 cycles and maintaining 1140 mAh g after 1000 cycles at 1.0 A g(-1). This excellent electrochemical performance can be attributed to the unique hollow porous architecture consisting of 3D hierarchical tubular core/shell architectures, and the effective hybridization of two electrochemically cohesive active materials. Our work shows that this material has great potential for high-energy and high-power energy storage applications. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 54 条
[1]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[2]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   An understanding of anomalous capacity of nano-sized CoO anode for advanced Li-ion battery [J].
Chen, C. H. ;
Hwang, B. J. ;
Do, J. S. ;
Weng, J. H. ;
Venkateswarlu, M. ;
Cheng, M. Y. ;
Santhanam, R. ;
Ragavendran, K. ;
Lee, J. F. ;
Chen, J. M. ;
Liu, D. G. .
ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (03) :496-498
[7]   Branched nanowires: Synthesis and energy applications [J].
Cheng, Chuanwei ;
Fan, Hong Jin .
NANO TODAY, 2012, 7 (04) :327-343
[8]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[9]   SnO2 nanoparticles@polypyrrole nanowires composite as anode materials for rechargeable lithium-ion batteries [J].
Cui, Lifeng ;
Shen, Jian ;
Cheng, Fangyi ;
Tao, Zhanliang ;
Chen, Jun .
JOURNAL OF POWER SOURCES, 2011, 196 (04) :2195-2201
[10]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935