Multicolored trees in complete graphs

被引:33
作者
Akbari, S.
Alipour, A.
机构
[1] Sharif Univ Technol, Dept Math Sci, Tehran, Iran
[2] Inst Studies Theoret Phys & Math, Tehran, Iran
基金
美国国家科学基金会;
关键词
multicolored tree; Rado's theorem; complete graph;
D O I
10.1002/jgt.20204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A multicolored tree is a tree whose edges have different colors. Brualdi and Hollingsworth [5] proved in any proper edge coloring of the complete graph K-2n(n > 2) with 2n - 1 colors, there are two edge-disjoint multicolored spanning trees. In this paper we generalize this result showing that if (a(1) ,..., a(k)) is a color distribution for the complete graph K-n, n >= 5, such that 2 <= a(1) <= a(2) <= (...) <= a(k) <= (n + 1)/2, then there exist two edge-disjoint multicolored spanning trees. Moreover, we prove that for any edge coloring of the complete graph K, with the above distribution if T is a non-star multicolored spanning tree of Kn, then there exists a multicolored spanning tree T' of K-n such that T and T' are edge-disjoint. Also it is shown that if K-n, n >= 6, is edge colored with k colors and k >= ((n-2)(2)) + 3, then there exist two edge-disjoint multicolored spanning trees. (c) 2006 Wiley Periodicals, Inc.
引用
收藏
页码:221 / 232
页数:12
相关论文
共 17 条
[1]   COLORINGS AND ORIENTATIONS OF GRAPHS [J].
ALON, N ;
TARSI, M .
COMBINATORICA, 1992, 12 (02) :125-134
[2]   MULTICOLORED FORESTS IN BIPARTITE DECOMPOSITIONS OF GRAPHS [J].
ALON, N ;
BRUALDI, RA ;
SHADER, BL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1991, 53 (01) :143-148
[3]  
BIALOSTOCKI A., 2001, B I COMBIN APPL, V32, P23
[4]  
Biggs N., 1993, Algebraic Graph Theory
[5]   Multicolored trees in complete graphs [J].
Brualdi, RA ;
Hollingsworth, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 68 (02) :310-313
[6]   AN EXCHANGE PROPERTY OF MATROID [J].
CHAN, W .
DISCRETE MATHEMATICS, 1995, 146 (1-3) :299-302
[7]  
Constantine GM, 2002, DISCRET MATH THEOR C, V5, P121
[8]   On the number of even and off Latin squares of order p+1 [J].
Drisko, AA .
ADVANCES IN MATHEMATICS, 1997, 128 (01) :20-35
[9]  
Drisko Arthur A., 1998, ELECT J COMBIN, V5
[10]  
Erdos P., 1975, C MATH SOC J BOLYAI, V10, P633