Deep Multi-task Learning for Interpretable Glaucoma Detection

被引:9
|
作者
Mojab, Nooshin [1 ]
Noroozi, Vahid [1 ]
Yu, Philip S. [1 ]
Hallak, Joelle A. [2 ]
机构
[1] Univ Illinois, Comp Sci Dept, 851 S Morgan St, Chicago, IL 60607 USA
[2] Univ Illinois, Dept Ophthalmol & Visual Sci, 1855 W Taylor St, Chicago, IL USA
来源
2019 IEEE 20TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2019) | 2019年
关键词
D O I
10.1109/IRI.2019.00037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Glaucoma is one of the leading causes of blindness worldwide. The rising prevalence of glaucoma, with our aging population, increases the need to develop automated systems that can aid physicians in early detection, ultimately preventing vision loss. Clinical interpretability and adequately labeled data present two major challenges for existing deep learning algorithms for automated glaucoma screening. We propose an interpretable multi-task model for glaucoma detection, called Interpretable Glaucoma Detector (InterGD). InterGD is composed of two major complementary components, segmentation and prediction modules. The segmentation module addresses the lack of clinical interpretability by locating the optic disc and optic cup regions in a fundus image. The prediction module utilizes a larger dataset to improve the performance of the segmentation task and thus mitigate the problem of limited labeled data in a segmentation module. The two components are effectively integrated into a unified multi-task framework allowing end-to-end training. To the best of our knowledge, this work is the first to incorporate interpretability into glaucoma screening employing deep learning methods. The experiments on three datasets, two public and one private, demonstrate the effectiveness of InterGD in achieving interpretable results for glaucoma screening.
引用
收藏
页码:167 / 174
页数:8
相关论文
共 50 条
  • [41] Automatic Cataract Detection with Multi-Task Learning
    Wu, Hongjie
    Lv, Jiancheng
    Wang, Jian
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [42] Adversarial Learning Guided Task Relatedness Refinement for Multi-Task Deep Learning
    Fang, Yuchun
    Cai, Sirui
    Cao, Yiting
    Li, Zhengchen
    Zhang, Zhaoxiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6946 - 6957
  • [43] Optimization of Deep Reinforcement Learning with Hybrid Multi-Task Learning
    Varghese, Nelson Vithayathil
    Mahmoud, Qusay H.
    2021 15TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE (SYSCON 2021), 2021,
  • [44] Improving Evidential Deep Learning via Multi-Task Learning
    Oh, Dongpin
    Shin, Bonggun
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 7895 - 7903
  • [45] Multi-task gradient descent for multi-task learning
    Lu Bai
    Yew-Soon Ong
    Tiantian He
    Abhishek Gupta
    Memetic Computing, 2020, 12 : 355 - 369
  • [46] Multi-task gradient descent for multi-task learning
    Bai, Lu
    Ong, Yew-Soon
    He, Tiantian
    Gupta, Abhishek
    MEMETIC COMPUTING, 2020, 12 (04) : 355 - 369
  • [47] Multi-task Deep Learning for Colon Cancer Grading
    Thi Le Trinh Vuong
    Lee, Daigeun
    Kwak, Jin Tae
    Kim, Kyungeun
    2020 INTERNATIONAL CONFERENCE ON ELECTRONICS, INFORMATION, AND COMMUNICATION (ICEIC), 2020,
  • [48] Saliency-Regularized Deep Multi-Task Learning
    Bai, Guangji
    Zhao, Liang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 15 - 25
  • [49] Unsupervised learning of multi-task deep variational model
    Tan, Lu
    Li, Ling
    Liu, Wan-Quan
    An, Sen-Jian
    Munyard, Kylie
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 87
  • [50] In Defense of the Unitary Scalarization for Deep Multi-Task Learning
    Kurin, Vitaly
    De Palma, Alessandro
    Kostrikov, Ilya
    Whiteson, Shimon
    Kumar, M. Pawan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,