Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation

被引:64
作者
Atere, Cornelius Talade [1 ,2 ]
Ge, Tida [1 ,2 ]
Zhu, Zhenke [1 ,2 ]
Tong, Chengli [1 ,2 ]
Jones, Davey L. [1 ,2 ,3 ]
Shibistova, Olga [4 ,5 ]
Guggenberger, Georg [1 ,2 ,4 ]
Wu, Jinshui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China
[2] Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China
[3] Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales
[4] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[5] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
基金
中国国家自然科学基金;
关键词
Paddy soils; C-13 continuous labelling; Carbon stabilisation; Root exudation; Rhizodeposition; Recent assimilates; WATER-SAVING IRRIGATION; ORGANIC-MATTER; ROOT EXUDATION; GAS-EXCHANGE; RHIZOSPHERE; AGGREGATE; DYNAMICS; ASSIMILATION; PLANTS; GROWTH;
D O I
10.1007/s00374-017-1190-4
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice ('Zhongzao 39') with (CO2)-C-13 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg(-1) urea vs. no addition) and then followed C-13 incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of C-13 (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root C-13 allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher C-13 allocation to the rhizosphere soil. Alone, alternating water management increased C-13 deposition by 43%. In contrast, N addition increased C-13 deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased C-13 deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 67 条
  • [1] [Anonymous], 2012, SPECIAL REPORT WORKI
  • [2] [Anonymous], NITROGEN MANAGEMENT
  • [3] [Anonymous], 2016, BIOL FERT SOILS, DOI DOI 10.1007/s00374-016-1101-0
  • [4] [Anonymous], AGR WATER MANAGE
  • [5] Water pulses and biogeochemical cycles in arid and semiarid ecosystems
    Austin, AT
    Yahdjian, L
    Stark, JM
    Belnap, J
    Porporato, A
    Norton, U
    Ravetta, DA
    Schaeffer, SM
    [J]. OECOLOGIA, 2004, 141 (02) : 221 - 235
  • [6] Role of the soil matrix and minerals in protecting natural organic materials against biological attack
    Baldock, JA
    Skjemstad, JO
    [J]. ORGANIC GEOCHEMISTRY, 2000, 31 (7-8) : 697 - 710
  • [7] Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia
    Belder, P
    Bouman, BAM
    Cabangon, R
    Lu, G
    Quilang, EJP
    Li, YH
    Spiertz, JHJ
    Tuong, TP
    [J]. AGRICULTURAL WATER MANAGEMENT, 2004, 65 (03) : 193 - 210
  • [8] WATER MANAGEMENT IN RELATION TO CROP PRODUCTION - CASE-STUDY ON RICE
    BHUIYAN, SI
    [J]. OUTLOOK ON AGRICULTURE, 1992, 21 (04) : 293 - 299
  • [9] CARBON AND NITROGEN DISTRIBUTION IN AGGREGATES FROM CULTIVATED AND NATIVE GRASSLAND SOILS
    CAMBARDELLA, CA
    ELLIOTT, ET
    [J]. SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (04) : 1071 - 1076
  • [10] Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling
    Canarini, Alberto
    Dijkstra, Feike A.
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2015, 81 : 195 - 203