Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation

被引:65
作者
Atere, Cornelius Talade [1 ,2 ]
Ge, Tida [1 ,2 ]
Zhu, Zhenke [1 ,2 ]
Tong, Chengli [1 ,2 ]
Jones, Davey L. [1 ,2 ,3 ]
Shibistova, Olga [4 ,5 ]
Guggenberger, Georg [1 ,2 ,4 ]
Wu, Jinshui [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China
[2] Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China
[3] Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales
[4] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[5] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
基金
中国国家自然科学基金;
关键词
Paddy soils; C-13 continuous labelling; Carbon stabilisation; Root exudation; Rhizodeposition; Recent assimilates; WATER-SAVING IRRIGATION; ORGANIC-MATTER; ROOT EXUDATION; GAS-EXCHANGE; RHIZOSPHERE; AGGREGATE; DYNAMICS; ASSIMILATION; PLANTS; GROWTH;
D O I
10.1007/s00374-017-1190-4
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice ('Zhongzao 39') with (CO2)-C-13 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg(-1) urea vs. no addition) and then followed C-13 incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of C-13 (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root C-13 allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher C-13 allocation to the rhizosphere soil. Alone, alternating water management increased C-13 deposition by 43%. In contrast, N addition increased C-13 deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased C-13 deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.
引用
收藏
页码:407 / 417
页数:11
相关论文
共 67 条
[1]  
[Anonymous], 2012, SPECIAL REPORT WORKI
[2]  
[Anonymous], NITROGEN MANAGEMENT
[3]  
[Anonymous], 2016, BIOL FERT SOILS, DOI DOI 10.1007/s00374-016-1101-0
[4]  
[Anonymous], AGR WATER MANAGE
[5]   Water pulses and biogeochemical cycles in arid and semiarid ecosystems [J].
Austin, AT ;
Yahdjian, L ;
Stark, JM ;
Belnap, J ;
Porporato, A ;
Norton, U ;
Ravetta, DA ;
Schaeffer, SM .
OECOLOGIA, 2004, 141 (02) :221-235
[6]   Role of the soil matrix and minerals in protecting natural organic materials against biological attack [J].
Baldock, JA ;
Skjemstad, JO .
ORGANIC GEOCHEMISTRY, 2000, 31 (7-8) :697-710
[7]   Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia [J].
Belder, P ;
Bouman, BAM ;
Cabangon, R ;
Lu, G ;
Quilang, EJP ;
Li, YH ;
Spiertz, JHJ ;
Tuong, TP .
AGRICULTURAL WATER MANAGEMENT, 2004, 65 (03) :193-210
[8]   WATER MANAGEMENT IN RELATION TO CROP PRODUCTION - CASE-STUDY ON RICE [J].
BHUIYAN, SI .
OUTLOOK ON AGRICULTURE, 1992, 21 (04) :293-299
[9]   CARBON AND NITROGEN DISTRIBUTION IN AGGREGATES FROM CULTIVATED AND NATIVE GRASSLAND SOILS [J].
CAMBARDELLA, CA ;
ELLIOTT, ET .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1993, 57 (04) :1071-1076
[10]   Dry-rewetting cycles regulate wheat carbon rhizodeposition, stabilization and nitrogen cycling [J].
Canarini, Alberto ;
Dijkstra, Feike A. .
SOIL BIOLOGY & BIOCHEMISTRY, 2015, 81 :195-203