Multi-Shell D-MRI Reconstruction via Residual Learning utilizing Encoder-Decoder Network with Attention (MSR-Net)

被引:0
作者
Jha, Ranjeet Ranjan [1 ]
Nigam, Aditya [1 ]
Bhavsar, Arnav [1 ]
Pathak, Sudhir K. [2 ]
Schneider, Walter [2 ]
Rathish, K. [3 ]
机构
[1] Indian Inst Technol Mandi, Sch Comp & Elect Engn SCEE, Mandi, Himachal Prades, India
[2] Univ Pittsburgh, Learning Res & Dev Ctr, Pittsburgh, PA 15260 USA
[3] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
关键词
Diffusion MRI; Multi-shell HARDI; Encoder-Decoder; Content Loss; Attention module; Feature module;
D O I
10.1109/embc44109.2020.9175455
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Contemporary diffusion MRI based analysis with HARDI, which provides more accurate fiber orientation, can be performed using single or multiple b-values (single or multi-shell). Single shell HARDI cannot provide volume fraction for different tissue types, which can produce bias and noisier results in estimation of fiber ODF. Multi-shell acquisition can resolve this issue. However, it requires more scanning time and is therefore not very well suited in clinical setting. Considering this, we propose a novel deep learning architecture, MSR-Net, for reconstruction of diffusion MRI volumes for some b-value using acquisitions at another b-value. In this work, we demonstrate this for b = 2000 s/mm(2) and b = 1000 s/mm(2). We learn such a transformation in the space of spherical harmonic coefficients. The proposed network consists of encoder-decoder along-with an attention module and a feature module. We have considered L2 and Content loss for optimizing and improving the performance. We have trained and validated the network using the HCP data-set with standard qualitative and quantitative performance measures.
引用
收藏
页码:1709 / 1713
页数:5
相关论文
共 11 条
[1]   Advanced diffusion MRI fiber tracking in neurosurgical and neurodegenerative disorders and neuroanatomical studies: A review [J].
Abhinav, Kumar ;
Yeh, Fang-Cheng ;
Pathak, Sudhir ;
Suski, Valerie ;
Lacomis, David ;
Friedlander, Robert M. ;
Fernandez-Miranda, Juan C. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2014, 1842 (11) :2286-2297
[2]   Regularized, fast, and robust analytical Q-Ball imaging [J].
Descoteaux, Maxime ;
Angelino, Elaine ;
Fitzgibbons, Shaun ;
Deriche, Rachid .
MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (03) :497-510
[3]   q-Space Deep Learning: Twelve-Fold Shorter and Model-Free Diffusion MRI Scans [J].
Golkov, Vladimir ;
Dosovitskiy, Alexey ;
Sperl, Jonathan I. ;
Menzel, Marion I. ;
Czisch, Michael ;
Saemann, Philipp ;
Brox, Thomas ;
Cremers, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1344-1351
[4]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[5]   Time-efficient and flexible design of optimized multishell HARDI diffusion [J].
Hutter, Jana ;
Tournier, J. Donald ;
Price, Anthony N. ;
Cordero-Grande, Lucilio ;
Hughes, Emer J. ;
Malik, Shaihan ;
Steinweg, Johannes ;
Bastiani, Matteo ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Andersson, Jesper ;
Edwards, A. David ;
Hajnal, Joseph V. .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (03) :1276-1292
[6]  
Javaid AQ, 2017, 2017 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), P453, DOI 10.1109/BHI.2017.7897303
[7]   PixISegNet: pixel-level iris segmentation network using convolutional encoder-decoder with stacked hourglass bottleneck [J].
Jha, Ranjeet Ranjan ;
Jaswal, Gaurav ;
Gupta, Divij ;
Saini, Shreshth ;
Nigam, Aditya .
IET BIOMETRICS, 2020, 9 (01) :11-24
[8]   Diffusion MRI Signal Augmentation: From Single Shell to Multi Shell with Deep Learning [J].
Koppers, Simon ;
Haarburger, Christoph ;
Merhof, Dorit .
COMPUTATIONAL DIFFUSION MRI, 2017, :61-70
[9]   A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury [J].
Shenton, M. E. ;
Hamoda, H. M. ;
Schneiderman, J. S. ;
Bouix, S. ;
Pasternak, O. ;
Rathi, Y. ;
Vu, M. -A. ;
Purohit, M. P. ;
Helmer, K. ;
Koerte, I. ;
Lin, A. P. ;
Westin, C. -F. ;
Kikinis, R. ;
Kubicki, M. ;
Stern, R. A. ;
Zafonte, R. .
BRAIN IMAGING AND BEHAVIOR, 2012, 6 (02) :137-192
[10]   High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity [J].
Tuch, DS ;
Reese, TG ;
Wiegell, MR ;
Makris, N ;
Belliveau, JW ;
Wedeen, VJ .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (04) :577-582