Highly Accurate Pseudospectral Approximations of the Prolate Spheroidal Wave Equation for Any Bandwidth Parameter and Zonal Wavenumber

被引:5
作者
Alici, H. [1 ,2 ]
Shen, J. [2 ]
机构
[1] Harran Univ, Dept Math, TR-63290 Sanliurfa, Turkey
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Prolate spheroidal wave equation; Classical orthogonal polynomials; Pseudospectral methods; ASYMPTOTIC-EXPANSION; SPECTRAL ELEMENT; EIGENVALUES; QUADRATURE;
D O I
10.1007/s10915-016-0321-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The prolate spheroidal wave equation (PSWE) is transformed, using suitable mappings, into three different canonical forms which resemble the Jacobi, Laguerre and the Hermite differential equations. The eigenpairs of the PSWE are approximated with the corresponding classical orthogonal polynomial as a basis set. It is observed that for any zonal wavenumber m the Jacobi type pseudospectral methods are well suited for small bandwidth parameters c whereas the Hermite and Laguerre pseudospectral methods are appropriate for very large c values. Moreover, Jacobi pseudospectral methods work well for any parameter values such that . Our numerical results confirm that for any values of m, the Jacobi and the Laguerre pseudospectral methods formulated in this article for the numerical solution of the PSWE with small and very large bandwidth parameters, respectively, are highly efficient both from the accuracy and fastness point of view.
引用
收藏
页码:804 / 821
页数:18
相关论文
共 24 条
[1]  
Abramowitz M., 1968, Handbook of Mathematical Functions
[2]   Pseudospectral methods for solving an equation of hypergeometric type with a perturbation [J].
Alici, H. ;
Taseli, H. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) :1140-1152
[3]  
[Anonymous], 2010, Handbook of Mathematical Functions
[4]  
[Anonymous], 1957, Spheroidal Wave Functions
[5]   The asymptotic iteration method for the angular spheroidal eigenvalues [J].
Barakat, T ;
Abodayeh, K ;
Mukheimer, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (06) :1299-1304
[6]   On the asymptotic expansion of the spheroidal wave function and its eigenvalues for complex size parameter [J].
Barrowes, BE ;
O'Neill, K ;
Grzegorczyk, TM ;
Kong, JA .
STUDIES IN APPLIED MATHEMATICS, 2004, 113 (03) :271-301
[7]   Algorithm 840: Computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions - Prolate elements [J].
Boyd, JP .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (01) :149-165
[8]   Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms [J].
Boyd, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) :688-716
[9]  
Boyd JP, 2001, Chebyshev and Fourier spectral methods
[10]   Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs [J].
Chen, QY ;
Gottlieb, D ;
Hesthaven, JS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1912-1933