Stroboscopic prethermalization in weakly interacting periodically driven systems

被引:69
|
作者
Canovi, Elena [1 ]
Kollar, Marcus [2 ]
Eckstein, Martin [1 ]
机构
[1] Univ Hamburg CFEL, Max Planck Res Dept Struct Dynam, Hamburg, Germany
[2] Univ Augsburg, Inst Phys, Ctr Elect Correlat & Magnetism, Theoret Phys 3, D-86159 Augsburg, Germany
关键词
TOPOLOGICAL INSULATOR; QUANTUM-SYSTEMS; ULTRAFAST; STATES; RELAXATION; TRANSITION; TRANSPORT; FIELD;
D O I
10.1103/PhysRevE.93.012130
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Time-periodic driving provides a promising route toward engineering nontrivial states in quantum many-body systems. However, while it has been shown that the dynamics of integrable, noninteracting systems can synchronize with the driving into a nontrivial periodic motion, generic nonintegrable systems are expected to heat up until they display a trivial infinite-temperature behavior. In this paper we show that a quasiperiodic time evolution over many periods can also emerge in weakly interacting systems, with a clear separation of the timescales for synchronization and the eventual approach of the infinite-temperature state. This behavior is the analog of prethermalization in quenched systems. The synchronized state can be described using a macroscopic number of approximate constants of motion. We corroborate these findings with numerical simulations for the driven Hubbard model.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Parametric Instabilities of Interacting Bosons in Periodically Driven 1D Optical Lattices
    Wintersperger, K.
    Bukov, M.
    Naeger, J.
    Lellouch, S.
    Demler, E.
    Schneider, U.
    Bloch, I.
    Goldman, N.
    Aidelsburger, M.
    PHYSICAL REVIEW X, 2020, 10 (01)
  • [32] Generalized bulk-boundary correspondence in periodically driven non-Hermitian systems
    Ji, Xiang
    Yang, Xiaosen
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (24)
  • [33] Absence of dynamical localization in interacting driven systems
    Luitz, David J.
    Bar Lev, Yevgeny
    Lazarides, Achilleas
    SCIPOST PHYSICS, 2017, 3 (04):
  • [34] Theory of many-body localization in periodically driven systems
    Abanin, Dmitry A.
    De Roeck, Wojciech
    Huveneers, Francois
    ANNALS OF PHYSICS, 2016, 372 : 1 - 11
  • [35] Emergent symmetries in prethermal phases of periodically driven quantum systems
    Banerjee, Tista
    Sengupta, K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (13)
  • [36] Exponential Bound for the Heating Rate of Periodically Driven Spin Systems
    Zobov, V. E.
    Kucherov, M. M.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2019, 128 (04) : 641 - 649
  • [37] Bounds on the recurrence probability in periodically-driven quantum systems
    Pandit, Tanmoy
    Green, Alaina M.
    Alderete, C. Huerta
    Linke, Norbert M.
    Uzdin, Raam
    QUANTUM, 2022, 6
  • [38] Strong-disorder renormalization group for periodically driven systems
    Berdanier, William
    Kolodrubetz, Michael
    Parameswaran, S. A.
    Vasseur, Romain
    PHYSICAL REVIEW B, 2018, 98 (17)
  • [39] Adiabatic perturbation theory and geometry of periodically-driven systems
    Weinberg, Phillip
    Bukov, Marin
    D'Alessio, Luca
    Polkovnikov, Anatoli
    Vajna, Szabolcs
    Kolodrubetz, Michael
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2017, 688 : 1 - 35
  • [40] Effective Hamiltonians for almost-periodically driven quantum systems
    Viennot, David
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (41)