Traffic Sign Detection and Recognition Using Multi-Scale Fusion and Prime Sample Attention

被引:19
|
作者
Cao, Jinghao [1 ]
Zhang, Junju [1 ]
Huang, Wei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
关键词
Traffic sign detection; multi-scale; prime sample attention; features extract;
D O I
10.1109/ACCESS.2020.3047414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign detection, though one of the key technologies in intelligent transportation, still has bottleneck in accuracy due to the small size and diversity of traffic signs. To solve this problem, we proposed a two-stage CNN object detection algorithm based on multi-scale feature fusion and prime sample attention. We improved the original Faster R-cnn model in terms of feature extraction and sampling strategy. For feature extraction, to elevate the ability of neural networks to detect small objects, we adopted HRNet as the feature extractor. There are four stages in HRNet - a series of high resolution subnets as the starting point with repeated adding parallel high to low resolution subnets to form other stages. In the whole process, the information in the parallel multi-resolution sub-network is repeatedly exchanged to perform repeated multi-scale fusion. For sampling strategy, we adopted a simple and effective sampling and learning strategy called Prime Sample Attention (PISA), consisting of Importance-based Sample Reweighting (ISR) and Classification Aware Regression Loss (CARL). PISA proposed the concepts of IoU Hierarchical Partial Sorting (IoU-HLR) and Hierarchical Partial Score Sorting (Score-HLR), which sort the importance of positive samples and negative samples in mini-batch respectively. With the proposed method, the training process is focusing on prime samples rather than evenly treat all ones. The algorithm complexity of our method is lower than that of other state-of-the-art. After experiments by TT100K dataset, our method can attain a comparable or even better detection accuracy and robustness.
引用
收藏
页码:3579 / 3591
页数:13
相关论文
共 50 条
  • [41] Detecting herd pigs using multi-scale fusion attention mechanism
    Lin H.
    Zhang K.
    Li H.
    Liu Y.
    Chen Z.
    Ma Q.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (21): : 188 - 195
  • [42] Multi-modal speech emotion recognition using self-attention mechanism and multi-scale fusion framework
    Liu, Yang
    Sun, Haoqin
    Guan, Wenbo
    Xia, Yuqi
    Zhao, Zhen
    SPEECH COMMUNICATION, 2022, 139 : 1 - 9
  • [43] Multi-modal speech emotion recognition using self-attention mechanism and multi-scale fusion framework
    Liu, Yang
    Sun, Haoqin
    Guan, Wenbo
    Xia, Yuqi
    Zhao, Zhen
    Speech Communication, 2022, 139 : 1 - 9
  • [44] Neural Network Based on Multi-Scale Saliency Fusion for Traffic Signs Detection
    Zou, Haohao
    Zhan, Huawei
    Zhang, Linqing
    SUSTAINABILITY, 2022, 14 (24)
  • [45] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Wu, Jingtao
    Dai, Guojun
    Zhou, Wenhui
    Zhu, Xudong
    Wang, Zengguan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [46] Multi-scale feature fusion with attention mechanism for crowded road object detection
    Jingtao Wu
    Guojun Dai
    Wenhui Zhou
    Xudong Zhu
    Zengguan Wang
    Journal of Real-Time Image Processing, 2024, 21
  • [47] Multi-Scale Feature Fusion Attention Network for Infrared Small Target Detection
    Zhang, Yidan
    Li, Chunlei
    Liu, Yundong
    Liu, Zhoufeng
    Yang, Ruimin
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [48] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Jie Zhang
    Qiye Qi
    Huanlong Zhang
    Qifan Du
    Fengxian Wang
    Xiaoping Shi
    Multimedia Tools and Applications, 2023, 82 : 40873 - 40889
  • [49] Parathyroid Gland Detection Based on Multi-Scale Weighted Fusion Attention Mechanism
    Liu, Wanling
    Lu, Wenhuan
    Li, Yijian
    Chen, Fei
    Jiang, Fan
    Wei, Jianguo
    Wang, Bo
    Zhao, Wenxin
    ELECTRONICS, 2025, 14 (06):
  • [50] Residual attention mechanism and weighted feature fusion for multi-scale object detection
    Zhang, Jie
    Qi, Qiye
    Zhang, Huanlong
    Du, Qifan
    Wang, Fengxian
    Shi, Xiaoping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (26) : 40873 - 40889