Traffic Sign Detection and Recognition Using Multi-Scale Fusion and Prime Sample Attention

被引:19
|
作者
Cao, Jinghao [1 ]
Zhang, Junju [1 ]
Huang, Wei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
关键词
Traffic sign detection; multi-scale; prime sample attention; features extract;
D O I
10.1109/ACCESS.2020.3047414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign detection, though one of the key technologies in intelligent transportation, still has bottleneck in accuracy due to the small size and diversity of traffic signs. To solve this problem, we proposed a two-stage CNN object detection algorithm based on multi-scale feature fusion and prime sample attention. We improved the original Faster R-cnn model in terms of feature extraction and sampling strategy. For feature extraction, to elevate the ability of neural networks to detect small objects, we adopted HRNet as the feature extractor. There are four stages in HRNet - a series of high resolution subnets as the starting point with repeated adding parallel high to low resolution subnets to form other stages. In the whole process, the information in the parallel multi-resolution sub-network is repeatedly exchanged to perform repeated multi-scale fusion. For sampling strategy, we adopted a simple and effective sampling and learning strategy called Prime Sample Attention (PISA), consisting of Importance-based Sample Reweighting (ISR) and Classification Aware Regression Loss (CARL). PISA proposed the concepts of IoU Hierarchical Partial Sorting (IoU-HLR) and Hierarchical Partial Score Sorting (Score-HLR), which sort the importance of positive samples and negative samples in mini-batch respectively. With the proposed method, the training process is focusing on prime samples rather than evenly treat all ones. The algorithm complexity of our method is lower than that of other state-of-the-art. After experiments by TT100K dataset, our method can attain a comparable or even better detection accuracy and robustness.
引用
收藏
页码:3579 / 3591
页数:13
相关论文
共 50 条
  • [31] Research on Event Target Recognition Based on DRUNet and Multi-scale Attention
    Liu, Zi-Long
    Tan, Bing
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [32] MsRAN: a multi-scale residual attention network for multi-model image fusion
    Wang, Jing
    Yu, Long
    Tian, Shengwei
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (12) : 3615 - 3634
  • [33] Research on Event Target Recognition Based on DRUNet and Multi-scale Attention
    Zi-Long Liu
    Bing Tan
    Neural Processing Letters, 56
  • [34] MsRAN: a multi-scale residual attention network for multi-model image fusion
    Jing Wang
    Long Yu
    Shengwei Tian
    Medical & Biological Engineering & Computing, 2022, 60 : 3615 - 3634
  • [35] Indian Traffic Sign Detection and Recognition
    Altaf Alam
    Zainul Abdin Jaffery
    International Journal of Intelligent Transportation Systems Research, 2020, 18 : 98 - 112
  • [36] Indian Traffic Sign Detection and Recognition
    Alam, Altaf
    Jaffery, Zainul Abdin
    INTERNATIONAL JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS RESEARCH, 2020, 18 (01) : 98 - 112
  • [37] A Multi-Scale Fusion Convolutional Neural Network for Face Detection
    Chen, Qiaosong
    Meng, Xiaomin
    Li, Wen
    Fu, Xingyu
    Deng, Xin
    Wang, Jin
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1013 - 1018
  • [38] Detecting multi-scale faces using attention-based feature fusion and smoothed context enhancement
    Shi L.
    Xu X.
    Kakadiaris I.A.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2 (03): : 235 - 244
  • [39] An efficient algorithm for multi-scale maritime object detection and recognition
    Liu, Yang
    Yi, Ran
    Ma, Ding
    Wang, Yongfu
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (03) : 7259 - 7271
  • [40] Simulation system for optimizing urban traffic network based on multi-scale fusion
    Wang, X. (wangxiuhe@cidp.edu.cn), 1600, Science and Engineering Research Support Society (08): : 227 - 236