Traffic Sign Detection and Recognition Using Multi-Scale Fusion and Prime Sample Attention

被引:19
|
作者
Cao, Jinghao [1 ]
Zhang, Junju [1 ]
Huang, Wei [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
关键词
Traffic sign detection; multi-scale; prime sample attention; features extract;
D O I
10.1109/ACCESS.2020.3047414
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traffic sign detection, though one of the key technologies in intelligent transportation, still has bottleneck in accuracy due to the small size and diversity of traffic signs. To solve this problem, we proposed a two-stage CNN object detection algorithm based on multi-scale feature fusion and prime sample attention. We improved the original Faster R-cnn model in terms of feature extraction and sampling strategy. For feature extraction, to elevate the ability of neural networks to detect small objects, we adopted HRNet as the feature extractor. There are four stages in HRNet - a series of high resolution subnets as the starting point with repeated adding parallel high to low resolution subnets to form other stages. In the whole process, the information in the parallel multi-resolution sub-network is repeatedly exchanged to perform repeated multi-scale fusion. For sampling strategy, we adopted a simple and effective sampling and learning strategy called Prime Sample Attention (PISA), consisting of Importance-based Sample Reweighting (ISR) and Classification Aware Regression Loss (CARL). PISA proposed the concepts of IoU Hierarchical Partial Sorting (IoU-HLR) and Hierarchical Partial Score Sorting (Score-HLR), which sort the importance of positive samples and negative samples in mini-batch respectively. With the proposed method, the training process is focusing on prime samples rather than evenly treat all ones. The algorithm complexity of our method is lower than that of other state-of-the-art. After experiments by TT100K dataset, our method can attain a comparable or even better detection accuracy and robustness.
引用
收藏
页码:3579 / 3591
页数:13
相关论文
共 50 条
  • [1] Multi-scale traffic sign detection model with attention
    Fan, Bei Bei
    Yang, He
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2021, 235 (2-3) : 708 - 720
  • [2] Traffic Sign Detection Using a Multi-Scale Recurrent Attention Network
    Tian, Yan
    Gelernter, Judith
    Wang, Xun
    Li, Jianyuan
    Yu, Yizhou
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (12) : 4466 - 4475
  • [3] MTSDet: multi-scale traffic sign detection with attention and path aggregation
    Hongyang Wei
    Qianqian Zhang
    Yurong Qian
    Zheng Xu
    Jingjing Han
    Applied Intelligence, 2023, 53 : 238 - 250
  • [4] Group multi-scale attention pyramid network for traffic sign detection
    Shen, Lili
    You, Liang
    Peng, Bo
    Zhang, Chuhe
    NEUROCOMPUTING, 2021, 452 : 1 - 14
  • [5] MTSDet: multi-scale traffic sign detection with attention and path aggregation
    Wei, Hongyang
    Zhang, Qianqian
    Qian, Yurong
    Xu, Zheng
    Han, Jingjing
    APPLIED INTELLIGENCE, 2023, 53 (01) : 238 - 250
  • [6] A lightweight vehicle mounted multi-scale traffic sign detector using attention fusion pyramid
    Wang, Junfan
    Chen, Yi
    Gu, Yeting
    Yan, Yunfeng
    Li, Qi
    Gao, Mingyu
    Dong, Zhekang
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (03): : 3360 - 3381
  • [7] A lightweight vehicle mounted multi-scale traffic sign detector using attention fusion pyramid
    Junfan Wang
    Yi Chen
    Yeting Gu
    Yunfeng Yan
    Qi Li
    Mingyu Gao
    Zhekang Dong
    The Journal of Supercomputing, 2024, 80 : 3360 - 3381
  • [8] Contextual and Multi-Scale Feature Fusion Network for Traffic Sign Detection
    Zhang, Wei
    Wang, Qiang
    Fan, Huijie
    Tang, Yandong
    2020 10TH INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2020), 2020, : 13 - 17
  • [9] A lightweight network for traffic sign recognition based on multi-scale feature and attention mechanism
    Wei, Wei
    Zhang, Lili
    Yang, Kang
    Li, Jing
    Cui, Ning
    Han, Yucheng
    Zhang, Ning
    Yang, Xudong
    Tan, Hongxin
    Wang, Kai
    HELIYON, 2024, 10 (04)
  • [10] Traffic Sign Recognition with Multi-Scale Convolutional Networks
    Sermanet, Pierre
    LeCun, Yann
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 2809 - 2813