Spacetime singularities in (2+1)-dimensional quantum gravity

被引:3
作者
Minassian, E [1 ]
机构
[1] Univ Calif Davis, Dept Phys, Davis, CA 95616 USA
关键词
D O I
10.1088/0264-9381/19/23/301
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The effects of spacetime quantization on black-hole and big-bang/big-crunch singularities can be studied using new tools from (2 + 1)-dimensional quantum gravity. I investigate effects of spacetime quantization on the singularities of the (2 + 1) -dimensional BTZ black hole and the (2 + I)-dimensional torus universe. Hosoya has considered the BTZ black hole, and using a 'quantum-generalized affine parameter' (QGAP), has shown that, for some specific paths, quantum effects 'smear' the singularity. Using generic Gaussian wavefunctions, I show that both the BTZ black hole and the torus universe contain families of paths that still reach the singularities with finite QGAPs, suggesting that singularities persist in quantum gravity. More realistic calculations, using modular-invariant wavefunctions of Carlip and Nelson for the torus universe, further support this conclusion.
引用
收藏
页码:5877 / 5900
页数:24
相关论文
共 50 条
[11]   EXACT QUANTUM SCATTERING IN 2+1 DIMENSIONAL GRAVITY [J].
CARLIP, S .
NUCLEAR PHYSICS B, 1989, 324 (01) :106-122
[12]   Causal diamonds in (2+1)-dimensional quantum gravity [J].
Andrade e Silva, Rodrigo ;
Jacobson, Ted .
PHYSICAL REVIEW D, 2023, 107 (02)
[13]   Quantum modular group in (2+1)-dimensional gravity [J].
Carlip, S ;
Nelson, JE .
PHYSICAL REVIEW D, 1999, 59 (02)
[14]   Finite conformal quantum gravity and spacetime singularities [J].
Modesto, Leonardo ;
Rachwal, Leslaw .
3RD KARL SCHWARZSCHILD MEETING - GRAVITY AND THE GAUGE/GRAVITY CORRESPONDENCE, 2018, 942
[15]   (2+1) dimensional black hole and (1+1) dimensional quantum gravity [J].
Lee, T .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 35 :S670-S674
[16]   (2+1)-dimensional quantum gravity, spin networks and asymptotics [J].
García-Islas, JM .
CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (02) :445-464
[17]   TRANSITION AMPLITUDES IN 2+1 DIMENSIONAL QUANTUM-GRAVITY [J].
YAMADA, A .
PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (03) :540-551
[18]   In search of fundamental discreteness in (2+1)-dimensional quantum gravity [J].
Budd, T. G. ;
Loll, R. .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (18)
[19]   Quantum mechanics of a point particle in (2+1)-dimensional gravity [J].
Matschull, HJ ;
Welling, M .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (10) :2981-3030
[20]   TOPOLOGY CHANGES IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY [J].
FUJIWARA, Y ;
HIGUCHI, S ;
HOSOYA, A ;
MISHIMA, T ;
SIINO, M .
PHYSICAL REVIEW D, 1991, 44 (06) :1763-1768