ON MULTI-VIEW LEARNING WITH ADDITIVE MODELS

被引:23
作者
Culp, Mark [1 ]
Michailidis, George [2 ]
Johnson, Kjell [3 ]
机构
[1] W Virginia Univ, Dept Stat, Morgantown, WV 26506 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
[3] Pfizer Global Res & Dev, Ann Arbor, MI 48105 USA
关键词
Multi-view learning; generalized additive model; semi-supervised learning; smoothing; model selection; REGRESSION;
D O I
10.1214/08-AOAS202
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many scientific settings data can be naturally partitioned into variable groupings called views. Common examples include environmental (1st view) and genetic information (2nd view) in ecological applications, chemical (1st view) and biological (2nd view) data in drug discovery. Multi-view data also occur in text analysis and proteomics applications where one view consists of a graph with observations as the vertices and a weighted measure of pairwise similarity between observations as the edges. Further, in several of these applications the observations can be partitioned into two sets, one where the response is observed (labeled) and the other where the response is not (unlabeled). The problem for simultaneously addressing viewed data and incorporating unlabeled observations in training is referred to as multiview transductive learning. In this work we introduce and Study a comprehensive generalized fixed point additive modeling framework for multi-view transductive learning, where any view is represented by a linear smoother. The problem of view selection is discussed using a generalized Akaike Information Criterion, which provides an approach for testing the contribution of each view. An efficient implementation is provided for fitting these models with both backfitting and local-scoring type algorithms adjusted to semi-supervised graph-based learning. The proposed technique is assessed oil both synthetic and real data sets and is shown to be competitive to state-of-the-art co-training and graph-based techniques.
引用
收藏
页码:292 / 318
页数:27
相关论文
共 50 条
  • [41] Multi-view Opinion Mining with Deep Learning
    Huang, Ping
    Xie, Xijiong
    Sun, Shiliang
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1451 - 1463
  • [42] Deep Tensor CCA for Multi-View Learning
    Wong, Hok Shing
    Wang, Li
    Chan, Raymond
    Zeng, Tieyong
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (06) : 1664 - 1677
  • [43] Multi-view Opinion Mining with Deep Learning
    Ping Huang
    Xijiong Xie
    Shiliang Sun
    Neural Processing Letters, 2019, 50 : 1451 - 1463
  • [44] Heterogeneous Graph Contrastive Multi-view Learning
    Wang, Zehong
    Li, Qi
    Yu, Donghua
    Han, Xiaolong
    Gao, Xiao-Zhi
    Shen, Shigen
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 136 - 144
  • [45] Tensor Learning in Multi-view Kernel PCA
    Houthuys, Lynn
    Suykens, Johan A. K.
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 205 - 215
  • [46] Robust Multi-view Common Component Learning
    Xu, Jiamiao
    You, Xinge
    Yin, Shi
    Zhang, Peng
    Yuan, Wei
    COMPUTER VISION, PT III, 2017, 773 : 268 - 279
  • [47] Efficient Graph Based Multi-view Learning
    Hu, Hengtong
    Hong, Richang
    Fu, Weijie
    Wang, Meng
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 691 - 703
  • [48] Collaborative Unsupervised Multi-View Representation Learning
    Zheng, Qinghai
    Zhu, Jihua
    Li, Zhongyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4202 - 4210
  • [49] Incorporating view location information for multi-view multi-label learning
    Wang, Jiabao
    Cheng, Yusheng
    APPLIED SOFT COMPUTING, 2025, 168
  • [50] Multi-view Unit Intact Space Learning
    Lin, Kun-Yu
    Wang, Chang-Dong
    Meng, Yu-Qin
    Zhao, Zhi-Lin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT (KSEM 2017): 10TH INTERNATIONAL CONFERENCE, KSEM 2017, MELBOURNE, VIC, AUSTRALIA, AUGUST 19-20, 2017, PROCEEDINGS, 2017, 10412 : 211 - 223