Parallel changes in qene expression after 20,000 generations of evolution in Escherichia coli

被引:336
作者
Cooper, TF [1 ]
Rozen, DE [1 ]
Lenski, RE [1 ]
机构
[1] Michigan State Univ, Ctr Microbial Ecol, E Lansing, MI 48824 USA
关键词
D O I
10.1073/pnas.0334340100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Twelve populations of Escherichia coli, derived from a common ancestor, evolved in a glucose-limited medium for 20,000 generations. Here we use DNA expression arrays to examine whether gene-expression profiles in two populations evolved in parallel, which would indicate adaptation, and to gain insight into the mechanisms underlying their adaptation. We compared the expression profile of the ancestor to that of clones sampled from both populations after 20,000 generations. The expression of 59 genes had changed significantly in both populations. Remarkably, all 59 were changed in the same direction relative to the ancestor. Many of these genes were members of the cAMP-cAMP receptor protein (CRP) and guanosine tetraphosphate (ppGpp) regulons. Sequencing of several genes controlling the effectors of these regulons found a nonsynonymous mutation in spoT in one population. Moving this mutation into the ancestral background showed that it increased fitness and produced many of the expression changes manifest after 20,000 generations. The same mutation had no effect on fitness when introduced into the other evolved population, indicating that a mutation of similar effect was present already. Our study demonstrates the utility of expression arrays for addressing evolutionary issues including the quantitative measurement of parallel evolution in independent lineages and the identification of beneficial mutations.
引用
收藏
页码:1072 / 1077
页数:6
相关论文
共 42 条
  • [1] [Anonymous], 1981, Statistical Tables
  • [2] Global gene expression profiling in Escherichia coli K12 -: The effects of integration host factor
    Arfin, SM
    Long, AD
    Ito, ET
    Tolleri, L
    Riehle, MM
    Paegle, ES
    Hatfield, GW
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (38) : 29672 - 29684
  • [3] Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response
    Arnold, CN
    McElhanon, J
    Lee, A
    Leonhart, R
    Siegele, DA
    [J]. JOURNAL OF BACTERIOLOGY, 2001, 183 (07) : 2178 - 2186
  • [4] Mechanism of regulation of transcription initiation by ppGpp.: I.: Effects of ppGpp on transcription initiation in vivo and in vitro
    Barker, MM
    Gaal, T
    Josaitis, CA
    Gourse, RL
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2001, 305 (04) : 673 - 688
  • [5] Bull JJ, 1997, GENETICS, V147, P1497
  • [6] Cashel M., 1996, ESCHERICHIA COLI SAL, V1, P1458
  • [7] The transcriptional program of sporulation in budding yeast
    Chu, S
    DeRisi, J
    Eisen, M
    Mulholland, J
    Botstein, D
    Brown, PO
    Herskowitz, I
    [J]. SCIENCE, 1998, 282 (5389) : 699 - 705
  • [8] The population genetics of ecological specialization in evolving Escherichia coli populations
    Cooper, VS
    Lenski, RE
    [J]. NATURE, 2000, 407 (6805) : 736 - 739
  • [9] Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B
    Cooper, VS
    Schneider, D
    Blot, M
    Lenski, RE
    [J]. JOURNAL OF BACTERIOLOGY, 2001, 183 (09) : 2834 - 2841
  • [10] Exploring the metabolic and genetic control of gene expression on a genomic scale
    DeRisi, JL
    Iyer, VR
    Brown, PO
    [J]. SCIENCE, 1997, 278 (5338) : 680 - 686