Consistency study of Lattice-Boltzmann schemes macroscopic limit

被引:26
作者
Farag, G. [1 ]
Zhao, S. [1 ,2 ]
Chiavassa, G. [1 ]
Boivin, P. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, M2P2, Marseille, France
[2] CNES Launchers Directorate, Paris, France
关键词
PARTIAL-DIFFERENTIAL-EQUATIONS; INCOMPRESSIBLE 2-PHASE FLOWS; SURFACE-TENSION; CHAPMAN-ENSKOG; MODEL; SIMULATION; HYDRODYNAMICS;
D O I
10.1063/5.0039490
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Owing to the lack of consensus about the way Chapman-Enskog should be performed, a new Taylor-expansion of lattice-Boltzmann models is proposed. In contrast to the Chapman-Enskog expansion, recalled in this manuscript, the method only assumes a sufficiently small time step. Based on the Taylor expansion, the collision kernel is reinterpreted as a closure for the stress-tensor equation. Numerical coupling of lattice-Boltzmann models with other numerical schemes, also encompassed by the method, is shown to create error terms whose scalings are more complex than those obtained via Chapman-Enskog. An athermal model and two compressible models are carefully analyzed through this new scope, casting a new light on each model's consistency with the Navier-Stokes equations.
引用
收藏
页数:17
相关论文
共 69 条
[1]  
[Anonymous], 1872, Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Klasse, DOI DOI 10.1007/978-3-322-84986-1_3
[2]  
[Anonymous], 1988, The Boltzmann Equation and Its Applications
[3]   A MODEL FOR COLLISION PROCESSES IN GASES .1. SMALL AMPLITUDE PROCESSES IN CHARGED AND NEUTRAL ONE-COMPONENT SYSTEMS [J].
BHATNAGAR, PL ;
GROSS, EP ;
KROOK, M .
PHYSICAL REVIEW, 1954, 94 (03) :511-525
[4]   Instabilities in the Chapman-Enskog expansion and hyperbolic Burnett equations [J].
Bobylev, A. V. .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (2-4) :371-399
[5]  
BOBYLEV AV, 1982, DOKL AKAD NAUK SSSR+, V262, P71
[6]  
Cercignani, 2000, RAREFIED GAS DYNAMIC, V21
[7]  
Chapman Sydney, 1970, MATH THEORY NONUNIFO
[8]   Recursive regularization step for high-order lattice Boltzmann methods [J].
Coreixas, Christophe ;
Wissocq, Gauthier ;
Puigt, Guillaume ;
Boussuge, Jean-Francois ;
Sagaut, Pierre .
PHYSICAL REVIEW E, 2017, 96 (03)
[9]   An interpretation and derivation of the lattice Boltzmann method using Strang splitting [J].
Dellar, Paul J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) :129-141
[10]   Simulation of turbulent flows with the entropic multirelaxation time lattice Boltzmann method on body-fitted meshes [J].
Di Ilio, G. ;
Dorschner, B. ;
Bella, G. ;
Sneer, S. ;
Karlin, I., V .
JOURNAL OF FLUID MECHANICS, 2018, 849 :35-56