Improvement of the Salinized Soil Properties of Fly Ash by Freeze-Thaw Cycles: An Impact Test Study

被引:12
|
作者
Cheng, Zhuo [1 ]
Cui, Gaohang [1 ]
Yang, Zheng [2 ]
Gang, Haohang [1 ]
Gao, Zening [1 ]
Zhang, Daili [1 ]
Xi, Chen [1 ]
机构
[1] Northeast Forestry Univ, Coll Civil Engn, Harbin 150040, Peoples R China
[2] Changan Univ, Sch Automobile, Xian 710064, Peoples R China
基金
中国国家自然科学基金;
关键词
fly ash; saline soil; seasonally frozen area; unconfined compressive strength; shear strength; microscopic pore structure; SHEAR-STRENGTH; BEHAVIOR; LOESS;
D O I
10.3390/su13052908
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To explore the mechanism of the microstructural change in salinized soil under freeze-thaw cycles and the strength characteristics of subgrade salinized soil improved by fly ash, an unconfined compressive test, a triaxial shear test, and a scanning electron microscopy test were carried out using salinized soil samples with different fly ash contents along the Suihua to Daqing expressway in China. The results showed that after several freeze-thaw cycles, the unconfined compressive strength, triaxial shear strength, cohesion, and internal friction angle of saline soil showed a decreasing trend. With an increase in the fly ash content, the internal friction angle, cohesion, unconfined compressive strength, and shear strength of the improved saline soil first increased and then decreased. When the fly ash content was 15%, the mechanical indexes, such as cohesion and the internal friction angle, reached the maximum value. Microscopic test results showed that the freeze-thaw cycle will lead to an increase in the proportion of pores and cracks, an increase in the average pore size, and a loosening of the soil structure. The addition of fly ash can fill the soil pores, improve the microstructure of the soil, increase the cohesive force of the soil particles, and improve the overall strength of the soil. Fly ash (15%) can be added to subgrade soil in the process of subgrade construction in the Suihua-Daqing expressway area to improve the shear strength and the resistance to freezing and thawing cycles. These research results are conducive to promoting the comprehensive utilization of fly ash, improving the utilization rate of resources, and promoting sustainable development, thus providing a reference for the design and construction of saline soil roadbed engineering in seasonal frozen areas and the development and construction of saline land belts in seasonal and winter areas.
引用
收藏
页码:1 / 23
页数:24
相关论文
共 50 条
  • [1] Dynamic properties of damage for fly ash soil after freeze-thaw cycles
    Wei, Hai-Bin
    Liu, Han-Bing
    Gong, Ya-Feng
    He, Yan
    Li, Chang-Yu
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2009, 41 (10): : 110 - 113
  • [2] Experimental research on dynamic properties of fly ash soil subjected to freeze-thaw cycles
    Wei, Hai-Bin
    Liu, Han-Bing
    Gao, Yi-Ping
    Fang, Ying
    Li, Chang-Yu
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (05): : 1005 - 1008
  • [3] Experimental research on dynamic properties of fly ash soil subjected to freeze-thaw cycles
    Wei Hai-bin
    Liu Han-bing
    Gao Yi-ping
    Fang Ying
    Li Chang-yu
    ROCK AND SOIL MECHANICS, 2007, 28 (05) : 1005 - 1008
  • [4] The Evolution of the Dynamic Modulus of Fly Ash Soil under the Freeze-thaw Cycles
    Chen Jia-feng
    Li Li
    Wei Hai-bin
    Chang Ming-ming
    PROCEEDINGS OF THE 2013 THE INTERNATIONAL CONFERENCE ON REMOTE SENSING, ENVIRONMENT AND TRANSPORTATION ENGINEERING (RSETE 2013), 2013, 31 : 748 - 751
  • [5] Test study on strength and permeability properties of lime-fly ash loess under freeze-thaw cycles
    Zhang, Zhiquan
    Zhang, Yufen
    Open Civil Engineering Journal, 2014, 8 (01): : 172 - 176
  • [6] Impact of freeze-thaw cycles on soil structure and soil hydraulic properties
    Leuther, Frederic
    Schlueter, Steffen
    SOIL, 2021, 7 (01) : 179 - 191
  • [7] Mechanical properties of salinized aeolian sand under freeze-thaw cycles
    Bao W.-X.
    Li W.
    Mao X.-S.
    Chen R.
    Qin C.
    Liu Y.-L.
    Jiaotong Yunshu Gongcheng Xuebao/Journal of Traffic and Transportation Engineering, 2023, 23 (06): : 114 - 124
  • [8] The Impact of Freeze-Thaw History on Soil Carbon Response to Experimental Freeze-Thaw Cycles
    Rooney, Erin C.
    Bailey, Vanessa L.
    Patel, Kaizad F.
    Possinger, Angela R.
    Gallo, Adrian C.
    Bergmann, Maya
    SanClements, Michael
    Lybrand, Rebecca A.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2022, 127 (05)
  • [9] Performance of Clay Soil Reinforced with Fly Ash and Lignin Fiber Subjected to Freeze-Thaw Cycles
    Orakoglu, Muge Elif
    Liu, Jiankun
    Lin, Robin
    Tian, Yahu
    JOURNAL OF COLD REGIONS ENGINEERING, 2017, 31 (04)
  • [10] Durability of fly ash concrete exposed to slow freeze-thaw cycles
    Badr, A.
    CONCRETE SOLUTIONS: PROCEEDINGS OF CONCRETE SOLUTIONS, 5TH INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, 2014, : 669 - 675