Iterated Posterior Linearization Smoother

被引:42
作者
Garcia-Fernandez, Angel F. [1 ]
Svensson, Lennart [2 ]
Sarkka, Simo [3 ]
机构
[1] Curtin Univ, Dept Elect & Comp Engn, Perth, WA 6102, Australia
[2] Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden
[3] Aalto Univ, Dept Elect Engn & Automat, Espoo 02150, Finland
关键词
Bayesian smoothing; iterated smoothing; Rauch-Tung-Striebel smoothing; sigma-points; statistical linear regression;
D O I
10.1109/TAC.2016.2592681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This note considers the problem of Bayesian smoothing in nonlinear state-space models with additive noise using Gaussian approximations. Sigma-point approximations to the general Gaussian Rauch-Tung-Striebel smoother are widely used methods to tackle this problem. These algorithms perform statistical linear regression (SLR) of the nonlinear functions considering only the previous measurements. We argue that SLR should be done taking all measurements into account. We propose the iterated posterior linearization smoother (IPLS), which is an iterated algorithm that performs SLR of the nonlinear functions with respect to the current posterior approximation. The algorithm is demonstrated to outperform conventional Gaussian nonlinear smoothers in two numerical examples.
引用
收藏
页码:2056 / 2063
页数:8
相关论文
共 22 条
[1]   Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature [J].
Arasaratnam, Ienkaran ;
Haykin, Simon ;
Elliott, Robert J. .
PROCEEDINGS OF THE IEEE, 2007, 95 (05) :953-977
[2]   Cubature Kalman smoothers [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
AUTOMATICA, 2011, 47 (10) :2245-2250
[3]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[4]  
Bar-Shalom Y., 2001, Estimation with Applications to Tracking and Navigation
[5]   THE ITERATED KALMAN SMOOTHER AS A GAUSS-NEWTON METHOD [J].
BELL, BM .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (03) :626-636
[6]   THE ITERATED KALMAN FILTER UPDATE AS A GAUSS-NEWTON METHOD [J].
BELL, BM ;
CATHEY, FW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) :294-297
[7]  
Bishop C., 2006, Pattern recognition and machine learning, P423
[8]  
CAPPE O, 2005, SPR S STAT, P1
[9]  
Deisenroth M. P., 2010, THESIS
[10]  
Fletcher R., 2013, Practical methods of optimization, DOI 10.1002/9781118723203