Arithmetic properties of overpartitions into odd parts

被引:34
作者
Hirschhorn, Michael D. [1 ]
Sellers, James A.
机构
[1] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
关键词
congruence; overpartition; odd parts;
D O I
10.1007/s00026-006-0293-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider various arithmetic properties of the function (p(o)) over bar (n) which denotes the number of overpartitions of n using only odd parts. This function has arisen in a number of recent papers, but in contexts which are very different from overpartitions. We prove a number of arithmetic results including several Ramanujan-like congruences satisfied by (p(o)) over bar (n) and some easily-stated characterizations of (p(o)) over bar (n) modulo small powers of two. For example, it is proven that, for n >= 1, (p(o)) over bar (n) = 0 (mod 4) if and only if n is neither a square nor twice a square.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 13 条
[1]  
Andrews G. E., 1976, ENCY MATH ITS APPL, V2
[2]   Filling the Bose sea: symmetric quantum Hall edge states and affine characters [J].
Ardonne, E ;
Kedem, R ;
Stone, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (03) :617-636
[3]   On pairs of partitions with steadily decreasing parts [J].
Bessenrodt, C .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 99 (01) :162-174
[4]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635
[5]  
CORTEEL S, 2004, TRENDS MATH MATH COM, V3, P15
[6]   CUBIC ANALOGS OF THE JACOBIAN THETA-FUNCTION THETA(Z,Q) [J].
HIRSCHHORN, M ;
GARVAN, F ;
BORWEIN, J .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (04) :673-694
[7]  
Hirschhorn M. D., 2005, Journal of Combinatorial Mathematics and Combinatorial Computing, V53, P65
[8]   Partial fractions and four classical theorems of number theory [J].
Hirschhorn, MD .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (03) :260-264
[9]   Gordon's theorem for overpartitions [J].
Lovejoy, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (02) :393-401
[10]   Overpartition theorems of the Rogers-Ramanujan type [J].
Lovejoy, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 69 :562-574