Brain folding shapes the branching pattern of the middle cerebral artery

被引:9
作者
Shalom, Diego E. [1 ,2 ]
Trevisan, Marcos A. [1 ,2 ]
Mallela, Arka [3 ]
Nunez, Maximiliano [4 ]
Goldschmidt, Ezequiel [3 ,5 ]
机构
[1] Consejo Nacl Invest Cient & Tecn, Phys Inst Buenos Aires IFIBA, Buenos Aires, DF, Argentina
[2] Univ Buenos Aires UBA, Dept Phys, Buenos Aires, DF, Argentina
[3] Univ Pittsburgh, Med Ctr, Dept Neurosurg, Pittsburgh, PA USA
[4] El Cruce Hosp, Dept Neurosurg, Florencio Varela, Buenos Aires, Argentina
[5] Karolinska Inst, Dept Med Biochem & Biophys, Div Mol Neurobiol, Stockholm, Sweden
关键词
MICROSURGICAL ANATOMY;
D O I
10.1371/journal.pone.0245167
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The folds of the brain offer a particular challenge for the subarachnoid vascular grid. The primitive blood vessels that occupy this space, when the brain is flat, have to adapt to an everchanging geometry while constructing an efficient network. Surprisingly, the result is a non-redundant arterial system easily challenged by acute occlusions. Here, we generalize the optimal network building principles of a flat surface growing into a folded configuration and generate an ideal middle cerebral artery (MCA) configuration that can be directly compared with the normal brain anatomy. We then describe how the Sylvian fissure (the fold in which the MCA is buried) is formed during development and use our findings to account for the differences between the ideal and the actual shaping pattern of the MCA. Our results reveal that folding dynamics condition the development of arterial anastomosis yielding a network without loops and poor response to acute occlusions.
引用
收藏
页数:13
相关论文
共 25 条
[1]   Spatial convergence of distant cortical regions during folding explains why arteries do not cross the sylvian fissure [J].
Bush, Alan ;
Nunez, Maximiliano ;
Brisbin, Alyssa K. ;
Friedlander, Robert M. ;
Goldschmidt, Ezequiel .
JOURNAL OF NEUROSURGERY, 2020, 133 (06) :1960-1969
[2]   Pterional transsylvian-transinsular approach in three cavernomas of the left anterior mesiotemporal region [J].
Campero, Alvaro ;
Ajler, Pablo ;
Garategui, Lucas ;
Goldschmidt, Ezequiel ;
Martins, Carolina ;
Rhoton, Albert .
CLINICAL NEUROLOGY AND NEUROSURGERY, 2015, 130 :14-19
[3]   Brain sulci and gyri: A practical anatomical review [J].
Campero, Alvaro ;
Ajler, Pablo ;
Emmerich, Juan ;
Goldschmidt, Ezequiel ;
Martins, Carolina ;
Rhoton, Albert .
JOURNAL OF CLINICAL NEUROSCIENCE, 2014, 21 (12) :2219-2225
[4]   Fluctuations and Redundancy in Optimal Transport Networks [J].
Corson, Francis .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)
[5]   Universal resilience patterns in complex networks [J].
Gao, Jianxi ;
Barzel, Baruch ;
Barabasi, Albert-Laszlo .
NATURE, 2016, 530 (7590) :307-312
[6]   Resilience in hierarchical fluid flow networks [J].
Gavrilchenko, Tatyana ;
Katifori, Eleni .
PHYSICAL REVIEW E, 2019, 99 (01)
[7]   A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth [J].
Gholipour, Ali ;
Rollins, Caitlin K. ;
Velasco-Annis, Clemente ;
Ouaalam, Abdelhakim ;
Akhondi-Asl, Alireza ;
Afacan, Onur ;
Ortinau, Cynthia M. ;
Clancy, Sean ;
Limperopoulos, Catherine ;
Yang, Edward ;
Estroff, Judy A. ;
Warfield, Simon K. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Automatic falx cerebri and tentorium cerebelli segmentation from Magnetic Resonance Images [J].
Glaister, Jeffrey ;
Carass, Aaron ;
Pham, Dzung L. ;
Butman, John A. ;
Prince, Jerry L. .
MEDICAL IMAGING 2017: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2017, 10137
[9]   Quantifying Loopy Network Architectures [J].
Katifori, Eleni ;
Magnasco, Marcelo O. .
PLOS ONE, 2012, 7 (06)
[10]   Damage and Fluctuations Induce Loops in Optimal Transport Networks [J].
Katifori, Eleni ;
Szollosi, Gergely J. ;
Magnasco, Marcelo O. .
PHYSICAL REVIEW LETTERS, 2010, 104 (04)