Conformal field theory and the exact solution of the BCS Hamiltonian

被引:46
作者
Sierra, G [1 ]
机构
[1] CSIC, Inst Matemat & Fis Fundamental, Madrid, Spain
关键词
conformal field theory; exactly integrable models; superconductivity;
D O I
10.1016/S0550-3213(00)00036-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a connection between conformal field theory (CFT) and the exact solution and integrability of the reduced BCS model of superconductivity. The relevant CFT is given by the SU(2)(k)-WZW model in the singular limit when the level k goes to -2. This theory has to be perturbed by an operator proportional to the inverse of the BCS coupling constant. Using the free field realization of this perturbed Wess-Zumino-Witten model, we derive the exact Richardson's wave function and the integrals of motion of the reduced BCS model in the saddle point approximation. The construction is reminiscent of the CFT approach to the Fractional Quantum Hall effect. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:517 / 534
页数:18
相关论文
共 63 条
[31]   VERTEX OPERATORS AND QUANTUM HALL-EFFECT [J].
FUBINI, S .
MODERN PHYSICS LETTERS A, 1991, 6 (04) :347-358
[32]   VERTEX OPERATORS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
FUBINI, S ;
LUTKEN, CA .
MODERN PHYSICS LETTERS A, 1991, 6 (06) :487-500
[33]   DIAGONALIZATION OF A CLASS OF SPIN HAMILTONIANS [J].
GAUDIN, M .
JOURNAL DE PHYSIQUE, 1976, 37 (10) :1087-1098
[34]   WESS-ZUMINO-WITTEN MODEL AS A THEORY OF FREE FIELDS [J].
GERASIMOV, A ;
MOROZOV, A ;
OLSHANETSKY, M ;
MARSHAKOV, A ;
SHATASHVILI, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (13) :2495-2589
[35]  
GINSPARG P, 1990, HOUCHES LECT
[36]   STRUCTURE OF REPRESENTATIONS WITH HIGHEST WEIGHT OF INFINITE-DIMENSIONAL LIE-ALGEBRAS [J].
KAC, VG ;
KAZHDAN, DA .
ADVANCES IN MATHEMATICS, 1979, 34 (01) :97-108
[37]  
KNIZHNIK VG, 1984, NUCL PHYS B, V247, P83, DOI 10.1016/0550-3213(84)90374-2
[39]   Small superconducting grain in the canonical ensemble [J].
Mastellone, A ;
Falci, G ;
Fazio, R .
PHYSICAL REVIEW LETTERS, 1998, 80 (20) :4542-4545
[40]   AN APPLICATION OF AOMOTO-GELFAND HYPERGEOMETRIC-FUNCTIONS TO THE SU(N) KNIZHNIK-ZAMOLODCHIKOV EQUATION [J].
MATSUO, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (01) :65-77