Stability of Solitary Waves and Global Existence of a Generalized Two-Component Camassa-Holm System

被引:29
作者
Chen, Robin Ming [1 ]
Liu, Yue [2 ]
Qiao, Zhijun [3 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Univ Texas Arlington, Dept Math, Arlington, TX 76019 USA
[3] Univ Texas Pan Amer, Dept Math, Edinburg, TX 78541 USA
基金
美国国家科学基金会;
关键词
Generalized two-component Camassa-Holm system; Global solutions; Solitary waves; Stability; SHALLOW-WATER EQUATION; COMPRESSIBLE ELASTIC RODS; WELL-POSEDNESS; PERIODIC PEAKONS; MODEL-EQUATIONS; BLOW-UP; BREAKING; SOLITONS;
D O I
10.1080/03605302.2011.556695
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study here the existence of solitary wave solutions of a generalized two-component Camassa-Holm system. In addition to those smooth solitary-wave solutions, we show that there are solitary waves with singularities: peaked and cusped solitary waves. We also demonstrate that all smooth solitary waves are orbitally stable in the energy space. We finally give a sufficient condition for global strong solutions to the equation in some special case.
引用
收藏
页码:2162 / 2188
页数:27
相关论文
共 52 条
[1]  
[Anonymous], 1997, Discrete Cont. Dyn. Syst., DOI 10.3934/dcds.1997.3.419
[2]   Multi-peakons and a theorem of Stieltjes [J].
Beals, R ;
Sattinger, DH ;
Szmigielski, J .
INVERSE PROBLEMS, 1999, 15 (01) :L1-L4
[3]   MODEL EQUATIONS FOR LONG WAVES IN NONLINEAR DISPERSIVE SYSTEMS [J].
BENJAMIN, TB ;
BONA, JL ;
MAHONY, JJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1972, 272 (1220) :47-+
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Chen R.M., 2011, INT MATH RES NOTICES, V6, P1387
[6]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[7]   On the cauchy problem for the periodic Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 141 (02) :218-235
[8]  
Constantin A, 1998, COMMUN PUR APPL MATH, V51, P475, DOI 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO
[9]  
2-5
[10]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243