Lump, multi-lump, cross kinky-lump and manifold periodic-soliton solutions for the (2+1)-D Calogero-Bogoyavlenskii-Schiff equation

被引:40
作者
Harun-Or-Roshid [1 ]
Khan, Mahbub Hassan [1 ,2 ]
Wazwaz, Abdul-Majid [3 ]
机构
[1] Pabna Univ Sci & Technol, Dept Math, Pabna 6600, Bangladesh
[2] Pundra Univ Sci & Technol, Dept CSE, Bogra, Bangladesh
[3] St Xavier Univ, Dept Math, Chicago, IL USA
关键词
Nonlinear physics; Periodic cross-kink wave solution; Lump wave solution; (2+1)-dimensional nonlinear; Calogero-Bogoyavlenskii-Schiff equation;
D O I
10.1016/j.heliyon.2020.e03701
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A bilinear form of the (2+1)-dimensional nonlinear Calogero-Bogoyavlenskii- Schiff (CBS) model is derived using a transformation of dependent variable, which contain a controlling parameter. This parameter can control the direction, wave height and angle of the traveling wave. Based on the Hirota bilinear form and ansatz functions, we build many types of novel structures and manifold periodic-soliton solutions to the CBS model. In particular, we obtain entirely exciting periodic-soliton, cross-kinky-lump wave, double kinky-lump wave, periodic cross-kinkylump wave, periodic two-solitary wave solutions as well as breather style of two-solitary wave solutions. We present their propagation features via changing the existence parametric values in graphically. In addition, we estimate a condition that the waves are propagated obliquely for. eta not equal 0, and orthogonally for eta = 0.
引用
收藏
页数:9
相关论文
共 15 条
[1]  
Akter S., 2020, Int. J. Appl. Comput. Math, V6, P11, DOI [10.1007/s40819-019-0759-z, DOI 10.1007/S40819-019-0759-Z]
[2]  
Biao D, 2004, CZECH J PHYS, V54, P517, DOI 10.1023/B:CJOP.0000024955.75594.8c
[3]   The Calogero-Bogoyavlenskii-Schiff equation in 2+1 dimensions [J].
Bruzón, MS ;
Gandarias, ML ;
Muriel, C ;
Ramírez, J ;
Saez, S ;
Romero, FR .
THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 137 (01) :1367-1377
[4]   Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation [J].
Chen, Shou-Ting ;
Ma, Wen-Xiu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (07) :1680-1685
[5]   The dynamic characteristics of harvesting energy from mechanical vibration via piezoelectric conversion [J].
Fan Kang-Qi ;
Ming Zheng-Feng ;
Xu Chun-Hui ;
Chao Feng-Bo .
CHINESE PHYSICS B, 2013, 22 (10)
[6]   Dynamics of mixed lump-solitary waves of an extended (2+1)-dimensional shallow water wave model [J].
Harun-Or-Roshid ;
Ma, Wen-Xiu .
PHYSICS LETTERS A, 2018, 382 (45) :3262-3268
[7]   Characteristics of the solitary waves and rogue waves with interaction phenomena in a (2+1)-dimensional Breaking Soliton equation [J].
Hossen, Md Belal ;
Roshid, Harun-Or ;
Ali, M. Zulfikar .
PHYSICS LETTERS A, 2018, 382 (19) :1268-1274
[8]   The Painleve Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients [J].
Kobayashi, Tadashi ;
Toda, Kouichi .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
[9]   New types of localized coherent structures in the Bogoyavlenskii-Schiff equation [J].
Peng, Yan-ze .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (09) :1779-1783
[10]   Exact and explicit traveling wave solutions to two nonlinear evolution equations which describe incompressible viscoelastic Kelvin-Voigt fluid [J].
Roshid, Md. Mamunur ;
Roshid, Harun-Or .
HELIYON, 2018, 4 (08)