Inverse Scattering for Schrodinger Operators with Miura Potentials, II. Different Riccati Representatives

被引:12
作者
Hryniv, Rostyslav O. [2 ,3 ]
Mykytyuk, Yaroslav V. [4 ]
Perry, Peter A. [1 ]
机构
[1] Univ Kentucky, Dept Math, 755 Patterson Off Tower, Lexington, KY 40506 USA
[2] Inst Appl Problems Mech & Math, Lvov, Ukraine
[3] Univ Rzeszow, Inst Math, Rzeszow, Poland
[4] Lviv Natl Univ, Dept Mech & Math, Lvov, Ukraine
基金
美国国家科学基金会;
关键词
Distributional potentials; Inverse scattering; Miura potentials; Schrodinger operators; LINE;
D O I
10.1080/03605302.2011.593014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is the second in a series of papers on scattering theory for one-dimensional Schrodinger operators with Miura potentials admitting a Riccati representation of the form q = u' + u(2) for some u is an element of L-2 (R). We consider potentials for which there exist 'left' and 'right' Riccati representatives with prescribed integrability on half-lines. This class includes all Faddeev-Marchenko potentials in L-1 (R, (1 + |x|) dx) generating positive Schrodinger operators as well as many distributional potentials with Dirac delta-functions and Coulomb-like singularities. We completely describe the corresponding set of reflection coefficients r and justify the algorithm reconstructing q from r.
引用
收藏
页码:1587 / 1623
页数:37
相关论文
共 26 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]  
Albeverio S., 2005, Solvable Models in Quantum Mechanics, V2
[3]  
[Anonymous], 1985, DIFF EQUAT+
[4]  
[Anonymous], BOUND STATES UNPUB
[5]   Dissipative eigenvalue problems for a Sturm-Liouville operator with a singular potential [J].
Bodenstorfer, B ;
Dijksma, A ;
Langer, H .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 :1237-1257
[6]   INVERSE SCATTERING ON THE LINE [J].
DEIFT, P ;
TRUBOWITZ, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1979, 32 (02) :121-251
[7]  
Faddeev L. D., 1964, Tr. Mat. Inst. Akad. Nauk SSSR, V73, P314
[8]  
Faddeev L.D., 1959, Uspekhi Mat. Nauk, V14, P57
[9]   THE FUNCTIONAL-ANALYTIC VERSUS THE FUNCTIONAL-INTEGRAL APPROACH TO QUANTUM HAMILTONIANS - THE ONE-DIMENSIONAL HYDROGEN-ATOM [J].
FISCHER, W ;
LESCHKE, H ;
MULLER, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2313-2323
[10]   Inverse scattering for Schrodinger operators with Miura potentials: I. Unique Riccati representatives and ZS-AKNS systems [J].
Frayer, C. ;
Hryniv, R. O. ;
Mykytyuk, Ya V. ;
Perry, P. A. .
INVERSE PROBLEMS, 2009, 25 (11)