On Bezier surfaces in three-dimensional Minkowski space

被引:8
作者
Ugail, H. [1 ]
Marquez, M. C. [2 ]
Yilmaz, A. [3 ]
机构
[1] Univ Bradford, Ctr Visual Comp, Bradford BD7 1DP, W Yorkshire, England
[2] Univ Seville, Dept Geometria & Topol, E-41080 Seville, Spain
[3] Akdeniz Univ, Fac Sci, Dept Math, TR-07058 Antalya, Turkey
关键词
Bezier surface; Timelike surface; Spacelike surface; Minkowski space; Minimal surface; Maximal surface; CONSTANT MEAN-CURVATURE;
D O I
10.1016/j.camwa.2011.07.065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Bezier surfaces in R-1(3) three-dimensional Minkowski space. In particular, we focus on timelike and spacelike cases for Bezier surfaces. We also deal with the Plateau-Bezier problem in R-1(3), obtaining conditions over the control net to be extremal of the Dirichlet function for both timelike and spacelike Bezier surfaces. Moreover, we provide interesting examples showing the behavior of the Plateau-Bezier problem in R-1(3) and illustrating the relationship between it and the corresponding Plateau-Bezier problem in the Euclidean space R-3. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2899 / 2912
页数:14
相关论文
共 24 条
[1]  
Abdel-Baky RA, 2008, ARCH MATH-BRNO, V44, P251
[2]   Timelike surfaces in the Lorentz-Minkowski space with prescribed Gaussian curvature and Gauss map [J].
Aledo, Juan A. ;
Espinar, José M. ;
Gálvez, José A. .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (08) :1357-1369
[3]  
Biswas S., 2008, BEZIER SPLINES IMAGE
[4]   On de Casteljau's algorithm [J].
Boehm, W ;
Müller, A .
COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (07) :587-605
[5]   Isogeometric finite element data structures based on Bezier extraction of NURBS [J].
Borden, Michael J. ;
Scott, Michael A. ;
Evans, John A. ;
Hughes, Thomas J. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) :15-47
[6]  
Brander D, 2008, J GEOM SYMMETRY PHYS, V12, P15
[7]  
Cardoze D., 2004, Proc. of the 13th International Meshing Roundtable, P71
[8]   Bezier surfaces and finite elements for MED simulations [J].
Czarny, Olivier ;
Huysmans, Guido .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) :7423-7445
[9]   Discrete Coons patches [J].
Farin, G ;
Hansford, D .
COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (07) :691-700
[10]  
Farin G., 2001, MORGAN KAUFMANN SERI, V5th