Landau theory for non-equilibrium steady states

被引:10
作者
Aron, Camille [1 ,2 ]
Chamon, Claudio [3 ]
机构
[1] Univ Paris, Sorbonne Univ, Univ PSL, Lab Phys,Ecole Normale Super,CNRS, Paris 75005, France
[2] Katholieke Univ Leuven, Inst Theoret Fys, Leuven, Belgium
[3] Boston Univ, Phys Dept, Boston, MA 02215 USA
来源
SCIPOST PHYSICS | 2020年 / 8卷 / 05期
关键词
PHASE-TRANSITIONS; MODEL;
D O I
10.21468/SciPostPhys.8.5.074
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We examine how non-equilibrium steady states close to a continuous phase transition can still be described by a Landau potential if one forgoes the assumption of analyticity. In a system simultaneously coupled to several baths at different temperatures, the non-analytic potential arises from the different density of states of the baths. In periodically driven-dissipative systems, the role of multiple baths is played by a single bath transferring energy at different harmonics of the driving frequency. The mean-field critical exponents become dependent on the low-energy features of the two most singular baths. We propose an extension beyond mean field.
引用
收藏
页数:18
相关论文
共 21 条
  • [1] Simple nonequilibrium extension of the Ising model
    Achahbar, A
    Alonso, JJ
    Munoz, MA
    [J]. PHYSICAL REVIEW E, 1996, 54 (05): : 4838 - 4843
  • [2] Impurity model for non-equilibrium steady states
    Aron, Camille
    Weber, Cedric
    Kotliar, Gabriel
    [J]. PHYSICAL REVIEW B, 2013, 87 (12)
  • [3] Dynamic phase transition in the two-dimensional kinetic Ising model in an oscillating field: Universality with respect to the stochastic dynamics
    Buendia, G. M.
    Rikvold, P. A.
    [J]. PHYSICAL REVIEW E, 2008, 78 (05):
  • [4] STATIONARY NONEQUILIBRIUM STATES IN THE ISING-MODEL WITH LOCALLY COMPETING TEMPERATURES
    GARRIDO, PL
    LABARTA, A
    MARRO, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 49 (3-4) : 551 - 568
  • [5] TIME-DEPENDENT STATISTICS OF ISING MODEL
    GLAUBER, RJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) : 294 - &
  • [6] Driven-dissipative Ising model: Mean-field solution
    Goldstein, G.
    Aron, C.
    Chamon, C.
    [J]. PHYSICAL REVIEW B, 2015, 92 (17)
  • [7] STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA
    GRINSTEIN, G
    JAYAPRAKASH, C
    YU, H
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (23) : 2527 - 2530
  • [8] Nonequilibrium mean-field theory of resistive phase transitions
    Han, Jong E.
    Li, Jiajun
    Aron, Camille
    Kotliar, Gabriel
    [J]. PHYSICAL REVIEW B, 2018, 98 (03)
  • [9] Non-equilibrium critical phenomena and phase transitions into absorbing states
    Hinrichsen, H
    [J]. ADVANCES IN PHYSICS, 2000, 49 (07) : 815 - 958
  • [10] THEORY OF DYNAMIC CRITICAL PHENOMENA
    HOHENBERG, PC
    HALPERIN, BI
    [J]. REVIEWS OF MODERN PHYSICS, 1977, 49 (03) : 435 - 479