Analysis and optimization of population annealing

被引:18
作者
Amey, Christopher [1 ]
Machta, Jonathan [1 ,2 ]
机构
[1] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[2] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
ISING SPIN-GLASS; RANDOM-WALK ALGORITHM; DENSITY-OF-STATES; ORDER-PARAMETER; MODELS; PHASE;
D O I
10.1103/PhysRevE.97.033301
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Population annealing is an easily parallelizable sequential Monte Carlo algorithm that is well suited for simulating the equilibrium properties of systems with rough free-energy landscapes. In this work we seek to understand and improve the performance of population annealing. We derive several useful relations between quantities that describe the performance of population annealing and use these relations to suggest methods to optimize the algorithm. These optimization methods were tested by performing large-scale simulations of the three-dimensional (3D) Edwards-Anderson (Ising) spin glass and measuring several observables. The optimization methods were found to substantially decrease the amount of computational work necessary as compared to previously used, unoptimized versions of population annealing. We also obtain more accurate values of several important observables for the 3D Edwards-Anderson model.
引用
收藏
页数:12
相关论文
共 35 条
[1]   Dynamics of the Wang-Landau algorithm and complexity of rare events for the three-dimensional bimodal Ising spin glass [J].
Alder, S ;
Trebst, S ;
Hartmann, AK ;
Troyer, M .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]  
[Anonymous], 2001, Sequential Monte Carlo methods in practice
[3]  
[Anonymous], ARXIV171009025
[4]  
[Anonymous], 2010, A kinetic view of statistical physics
[5]   Constant-pressure nested sampling with atomistic dynamics [J].
Baldock, Robert J. N. ;
Bernstein, Noam ;
Salerno, K. Michael ;
Partay, Livia B. ;
Csanyi, Gabor .
PHYSICAL REVIEW E, 2017, 96 (04)
[6]   Nature of the spin-glass phase at experimental length scales [J].
Banos, R. Alvarez ;
Cruz, A. ;
Fernandez, L. A. ;
Gil-Narvion, J. M. ;
Gordillo-Guerrero, A. ;
Guidetti, M. ;
Maiorano, A. ;
Mantovani, F. ;
Marinari, E. ;
Martin-Mayor, V. ;
Monforte-Garcia, J. ;
Sudupe, A. Munoz ;
Navarro, D. ;
Parisi, G. ;
Perez-Gaviro, S. ;
Ruiz-Lorenzo, J. J. ;
Schifano, S. F. ;
Seoane, B. ;
Tarancon, A. ;
Tripiccione, R. ;
Yllanes, D. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
[7]   GPU accelerated population annealing algorithm [J].
Barash, Lev Yu. ;
Weigel, Martin ;
Borovsky, Michal ;
Janke, Wolfhard ;
Shchur, Lev N. .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 220 :341-350
[8]   Exploring first-order phase transitions with population annealing [J].
Barash, Lev Yu. ;
Weigel, Martin ;
Shchur, Lev N. ;
Janke, Wolfhard .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (04) :595-604
[9]   CRITICAL-BEHAVIOR OF THE 3-DIMENSIONAL ISING SPIN-GLASS [J].
BRAY, AJ ;
MOORE, MA .
PHYSICAL REVIEW B, 1985, 31 (01) :631-633
[10]   Population annealing simulations of a binary hard-sphere mixture [J].
Callaham, Jared ;
Machta, Jonathan .
PHYSICAL REVIEW E, 2017, 95 (06)