Local linear convergence of stochastic higher-order methods for convex optimization

被引:0
|
作者
Lupu, Daniela [1 ]
Necoara, Ion [1 ,2 ]
机构
[1] Univ Politehn Bucuresti, Automat Control & Syst Engn Dept, Bucharest 060042, Romania
[2] Romanian Acad, Gheorghe Mihoc Caius Iacob Inst Math Stat & Appl, Bucharest 050711, Romania
来源
2021 EUROPEAN CONTROL CONFERENCE (ECC) | 2021年
关键词
NEWTON METHOD;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a stochastic higher-order algorithm for solving finite sum convex optimization problems. Our algorithmic framework is based on the notion of stochastic higher-order upper bound approximations of the finite sum objective function. For building such a framework we only require that this bound approximate the objective function up to an error that is p times differentiable and has a Lipschitz continuous p derivative. This leads to a stochastic higher-order majorization-minimization algorithm, which we call SHOM. We show that the algorithm SHOM achieves local linear convergence rate for the function values provided that the finite sum objective function is uniformly convex. Numerical simulations confirm the efficiency of our method.
引用
收藏
页码:2219 / 2224
页数:6
相关论文
共 50 条
  • [1] EFFICIENT OPTIMAL FAMILIES OF HIGHER-ORDER ITERATIVE METHODS WITH LOCAL CONVERGENCE
    Behl, Ramandeep
    Gutierrez, J. M.
    Argyros, I. K.
    Alshomrani, A. S.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2020, 14 (03) : 729 - 753
  • [2] A family of iterative methods with higher-order convergence
    Wu Peng
    Han Danfu
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 474 - 477
  • [3] Linear convergence of first order methods for non-strongly convex optimization
    I. Necoara
    Yu. Nesterov
    F. Glineur
    Mathematical Programming, 2019, 175 : 69 - 107
  • [4] Linear convergence of first order methods for non-strongly convex optimization
    Necoara, I.
    Nesterov, Yu.
    Glineur, F.
    MATHEMATICAL PROGRAMMING, 2019, 175 (1-2) : 69 - 107
  • [5] Generalized higher-order cone-convex functions and higher-order duality in vector optimization
    Suneja, S. K.
    Sharma, Sunila
    Yadav, Priyanka
    ANNALS OF OPERATIONS RESEARCH, 2018, 269 (1-2) : 709 - 725
  • [6] Generalized higher-order cone-convex functions and higher-order duality in vector optimization
    S. K. Suneja
    Sunila Sharma
    Priyanka Yadav
    Annals of Operations Research, 2018, 269 : 709 - 725
  • [7] ASYMPTOTIC CONVERGENCE OF HIGHER-ORDER ACCURATE PANEL METHODS
    OSKAM, B
    JOURNAL OF AIRCRAFT, 1986, 23 (02): : 126 - 130
  • [8] Accelerating the convergence of higher-order coupled cluster methods
    Matthews, Devin A.
    Stanton, John F.
    JOURNAL OF CHEMICAL PHYSICS, 2015, 143 (20):
  • [10] Higher-order interior point methods for convex nonlinear programming
    Espaas, T. A.
    Vassiliadis, V. S.
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180