Organolead Halide Perovskite Nanocrystals: Branched Capping Ligands Control Crystal Size and Stability

被引:318
作者
Luo, Binbin [1 ,2 ]
Pu, Ying-Chih [4 ]
Lindley, Sarah A. [1 ]
Yang, Yi [1 ]
Lu, Liqiang [1 ,3 ]
Li, Yat [1 ]
Li, Xueming [2 ]
Zhang, Jin Z. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Chongqing Univ, Dept Chem & Chem Engn, Chongqing 400044, Peoples R China
[3] China Univ Geosci, Fac Mat Sci & Chem, Wuhan, Peoples R China
[4] Natl Univ Tainan, Dept Mat Sci, Tainan 70005, Taiwan
关键词
(3-aminopropyl)triethoxysilane (APTES); nanocrystals; nanocrystal stability; organolead halide perovskites; photoluminescence; QUANTUM DOTS; HIGH-PERFORMANCE; TEMPERATURE; PASSIVATION; DYNAMICS; GROWTH;
D O I
10.1002/anie.201602236
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CH3NH3PbBr3 perovskite nanocrystals (PNCs) of different sizes (ca. 2.5-100 nm) with high photoluminescence (PL) quantum yield (QY; ca. 15-55%) and product yield have been synthesized using the branched molecules, APTES and NH2-POSS, as capping ligands. These ligands are sterically hindered, resulting in a uniform size of PNCs. The different capping effects resulting from branched versus straight-chain capping ligands were compared and a possible mechanism proposed to explain the dissolution-precipitation process, which affects the growth and aggregation of PNCs, and thereby their overall stability. Unlike conventional PNCs capped with straight-chain ligands, APTES-capped PNCs show high stability in protic solvents as a result of the strong steric hindrance and propensity for hydrolysis of APTES, which prevent such molecules from reaching and reacting with the core of PNCs.
引用
收藏
页码:8864 / 8868
页数:5
相关论文
共 34 条
[21]   Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States [J].
Stranks, Samuel D. ;
Burlakov, Victor M. ;
Leijtens, Tomas ;
Ball, James M. ;
Goriely, Alain ;
Snaith, Henry J. .
PHYSICAL REVIEW APPLIED, 2014, 2 (03)
[22]  
Swarnkar A., 2015, Angew. Chem, V127, DOI [10.1002/anie.201508276, DOI 10.1002/ANIE.201508276, DOI 10.1002/ANGE.201508276]
[23]   Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots [J].
Swarnkar, Abhishek ;
Chulliyil, Ramya ;
Ravi, Vikash Kumar ;
Irfanullah, Mir ;
Chowdhury, Arindam ;
Nag, Angshuman .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (51) :15424-15428
[24]  
Tan ZK, 2014, NAT NANOTECHNOL, V9, P687, DOI [10.1038/nnano.2014.149, 10.1038/NNANO.2014.149]
[25]   Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement [J].
Tyagi, Pooja ;
Arveson, Sarah M. ;
Tisdale, William A. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (10) :1911-1916
[26]   All-Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics [J].
Wang, Yue ;
Li, Xiaoming ;
Song, Jizhong ;
Xiao, Lian ;
Zeng, Haibo ;
Sun, Handong .
ADVANCED MATERIALS, 2015, 27 (44) :7101-+
[27]   Growth and Anion Exchange Conversion of CH3NH3PbX3 Nanorod Arrays for Light-Emitting Diodes [J].
Wong, Andrew Barnabas ;
Lai, Minliang ;
Eaton, Samuel Wilson ;
Yu, Yi ;
Lin, Elbert ;
Dou, Letian ;
Fu, Anthony ;
Yang, Peidong .
NANO LETTERS, 2015, 15 (08) :5519-5524
[28]  
Xing GC, 2014, NAT MATER, V13, P476, DOI [10.1038/nmat3911, 10.1038/NMAT3911]
[29]   Effects of incorporating PbS quantum dots in perovskite solar cells based on CH3NH3PbI3 [J].
Yang, Ying ;
Wang, Wenyong .
JOURNAL OF POWER SOURCES, 2015, 293 :577-584
[30]   Interfacial Oxygen Vacancies as a Potential Cause of Hysteresis in Perovskite Solar Cells [J].
Zhang, Fan ;
Ma, Wei ;
Guo, Haizhong ;
Zhao, Yicheng ;
Shan, Xinyan ;
Jin, Kuijuan ;
Tian, He ;
Zhao, Qing ;
Yu, Dapeng ;
Lu, Xinghua ;
Lu, Gang ;
Meng, Sheng .
CHEMISTRY OF MATERIALS, 2016, 28 (03) :802-812