First- and second-order error estimates in Monte Carlo integration

被引:1
作者
Bakx, R. [1 ]
Kleiss, R. H. P. [1 ]
Versteegen, F. [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, Heyendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
关键词
Monte Carlo integration; Error estimates; Central limit theorem; Chan-Golub algorithm;
D O I
10.1016/j.cpc.2016.07.021
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In Monte Carlo integration an accurate and reliable determination of the numerical integration error is essential. We point out the need for an independent estimate of the error on this error, for which we present an unbiased estimator. In contrast to the usual (first-order) error estimator, this second-order estimator can be shown to be not necessarily positive in an actual Monte Carlo computation. We propose an alternative and indicate how this can be computed in linear time without risk of large rounding errors. In addition, we comment on the relatively very slow convergence of the second-order error estimate. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 5 条