Duals of noncommutative supersymmetric U(1) gauge theory -: art. no. 010

被引:0
作者
Dayi, ÖF
Ülker, K
Yapiskan, B
机构
[1] Istanbul Tech Univ, Fac Sci & Letters, Dept Phys, TR-80626 Istanbul, Turkey
[2] Feza Gursey Inst, TR-81220 Cengelkoy, Turkey
关键词
duality in gauge field theories; non-commutative geometry;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Parent actions for component fields are utilized to derive the dual of supersymmetric U(1) gauge theory in 4 dimensions. Generalization of the Seiberg-Witten map to the component fields of noncommutative supersymmetric U(1) gauge theory is analyzed. Through this transformation we proposed parent actions for noncommutative supersymmetric U(1) gauge theory as generalization of the ordinary case. Duals of noncommutative supersymmetric U(1) gauge theory are obtained. Duality symmetry under the interchange of fields with duals accompanied by the replacement of the noncommutativity parameter Theta(munu) with Theta(munu) = g(2) epsilon(munurhosigma)Theta(rhosigma) of the non-supersymmetric case is broken at the level of actions. We proposed a noncommutative parent action for the component fields which generates actions possessing this duality symmetry.
引用
收藏
页数:12
相关论文
共 9 条
[1]  
Chekhov L. O., HEPTH0103048
[2]  
Ferrara S, 2000, J HIGH ENERGY PHYS
[3]   Duality and noncommutative gauge theory [J].
Ganor, OJ ;
Rajesh, G ;
Sethi, S .
PHYSICAL REVIEW D, 2000, 62 (12) :1-3
[4]  
Paban S, 2002, J HIGH ENERGY PHYS
[5]   Seiberg-Witten map for noncommutative super Yang-Mills theory [J].
Putz, V ;
Wulkenhaar, R .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (19) :3325-3334
[6]   ELECTRIC-MAGNETIC DUALITY, MONOPOLE CONDENSATION, AND CONFINEMENT IN N=2 SUPERSYMMETRIC YANG-MILLS THEORY [J].
SEIBERG, N ;
WITTEN, E .
NUCLEAR PHYSICS B, 1994, 426 (01) :19-52
[7]   String theory and noncommutative geometry [J].
Seiberg, N ;
Witten, E .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09) :XLII-92
[8]   A note on superfields and noncommutative geometry [J].
Terashima, S .
PHYSICS LETTERS B, 2000, 482 (1-3) :276-282
[9]  
Wess J., 1992, SUPERSYMMETRY SUPERG