On the Roman Bondage Number of Planar Graphs

被引:11
作者
Rad, Nader Jafari [1 ,2 ]
Volkmann, Lutz [3 ]
机构
[1] Shahrood Univ Technol, Dept Math, Shahrood, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Domination; Roman domination; Roman bondage number; Planar graphs; DOMINATION;
D O I
10.1007/s00373-010-0978-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Roman dominating function on a graph G is a function f : V(G) -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0 is adjacent to at least one vertex v for which f (v) = 2. The weight of a Roman dominating function is the value f (V(G)) = Sigma(u is an element of V(G)) f (u). The Roman domination number, gamma(R)(G), of G is the minimum weight of a Roman dominating function on G. The Roman bondage number b(R)(G) of a graph G with maximum degree at least two is the minimum cardinality of all sets E' subset of E(G) for which gamma(R)(G - E') > gamma(R)(G). In this paper we present different bounds on the Roman bondage number of planar graphs.
引用
收藏
页码:531 / 538
页数:8
相关论文
共 13 条
[1]   DOMINATION ALTERATION SETS IN GRAPHS [J].
BAUER, D ;
HARARY, F ;
NIEMINEN, J ;
SUFFEL, CL .
DISCRETE MATHEMATICS, 1983, 47 (2-3) :153-161
[2]   On the bondage number of planar and directed graphs [J].
Carlson, Kelli ;
Develin, Mike .
DISCRETE MATHEMATICS, 2006, 306 (8-9) :820-826
[3]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[4]  
Dunbar JE, 1998, MG TXB PUR APPL MATH, V209, P471
[5]   THE BONDAGE NUMBER OF A GRAPH [J].
FINK, JF ;
JACOBSON, MS ;
KINCH, LF ;
ROBERTS, J .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :47-57
[6]   Remarks on the bondage number of planar graphs [J].
Fischermann, M ;
Rautenbach, D ;
Volkmann, L .
DISCRETE MATHEMATICS, 2003, 260 (1-3) :57-67
[7]   BOUNDS ON THE BONDAGE NUMBER OF A GRAPH [J].
HARTNELL, BL ;
RALL, DF .
DISCRETE MATHEMATICS, 1994, 128 (1-3) :173-177
[8]  
Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
[9]   Bondage number of planar graphs [J].
Kang, LY ;
Yuan, JJ .
DISCRETE MATHEMATICS, 2000, 222 (1-3) :191-198
[10]  
RAD NJ, 2009, ROMAN BONDAGE UNPUB