GaAs on 200 mm Si wafers via thin temperature graded Ge buffers by molecular beam epitaxy

被引:11
作者
Richter, M. [1 ]
Rossel, C. [1 ]
Webb, D. J. [1 ]
Topuria, T. [2 ]
Gerl, C. [1 ]
Sousa, M. [1 ]
Marchiori, C. [1 ]
Caimi, D. [1 ]
Siegwart, H. [1 ]
Rice, P. M. [2 ]
Fompeyrine, J. [1 ]
机构
[1] IBM Res, CH-8803 Ruschlikon, Switzerland
[2] IBM Res, San Jose, CA USA
关键词
Molecular beam epitaxy; Semiconducting gallium arsenide; Semiconducting germanium; Semiconducting silicon; MOS capacitors; Roughening; SURFACE; SILICON; LAYERS;
D O I
10.1016/j.jcrysgro.2010.12.002
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
For heterogeneous integration of III-V compound materials on 200 mm Si wafers, we present a complete in-situ molecular beam epitaxy (MBE) process from a Ge strain compensating buffer on Si to GaAs heteroepitaxy. The whole growth process, including high-k gate oxide deposition, is performed in a 200 mm MBE cluster tool. Thin (<= 0.3 mu m), temperature-graded Ge buffers are investigated and the influence of the substrate temperature during Ge nucleation and anneals is studied. Using such a buffer, GaAs was grown on 200 mm Si wafers and characterized structurally and electrically using MOS capacitors. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:387 / 392
页数:6
相关论文
共 50 条
  • [41] In situ study of low-temperature growth and Mn, Si, Sn doping of GaAs (001) in molecular beam epitaxy
    Pristovsek, M
    Tsukamoto, S
    JOURNAL OF CRYSTAL GROWTH, 2004, 265 (3-4) : 425 - 433
  • [42] Characterization of the microstructures and optical properties of CdTe(001) and (111) thin films grown on GaAs(001) substrates by molecular beam epitaxy
    Zhang, ShengXi
    Zhang, Jian
    Qiu, XiaoFang
    Wu, Yan
    Chen, PingPing
    JOURNAL OF CRYSTAL GROWTH, 2020, 546
  • [43] Low-temperature growth of Ge1-xSnx thin films with strain control by molecular beam epitaxy
    Lin, Hai
    Chen, Robert
    Huo, Yijie
    Kamins, Theodore I.
    Harris, James S.
    THIN SOLID FILMS, 2012, 520 (11) : 3927 - 3930
  • [44] On the correlation of growth, structural and electrical properties of epitaxial Ge grown on Si by solid source molecular beam epitaxy
    Das, Sudipta
    Khiangte, Krista R.
    Fandan, Rajveer S.
    Rathore, Jaswant S.
    Pokharia, Ravindra S.
    Mahapatra, Suddhasatta
    Laha, Apurba
    CURRENT APPLIED PHYSICS, 2017, 17 (03) : 327 - 332
  • [45] Droplet epitaxy mediated growth of GaN nanostructures on Si (111) via plasma-assisted molecular beam epitaxy
    Fedorov, V. V.
    Bolshakov, A. D.
    Kirilenko, D. A.
    Mozharov, A. M.
    Sitnikova, A. A.
    Sapunov, G. A.
    Dvoretckai, L. N.
    Shtrom, I. V.
    Cirlin, G. E.
    Mukhin, I. S.
    CRYSTENGCOMM, 2018, 20 (24): : 3370 - 3380
  • [46] INITIAL-STAGES OF GAAS MOLECULAR-BEAM EPITAXY GROWTH ON POROUS SI
    MAEHASHI, K
    SATO, M
    HASEGAWA, S
    NAKASHIMA, H
    ITO, T
    HIRAKI, A
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1991, 30 (4B): : L683 - L685
  • [47] Self-catalyzed molecular beam epitaxy growth and their optoelectronic properties of vertical GaAs nanowires on Si(111)
    Zhang, Lichun
    Geng, Xuewen
    Zha, Guowei
    Xu, Jianxing
    Wei, Sihang
    Ma, Ben
    Chen, Zesheng
    Shang, Xiangjun
    Ni, Haiqiao
    Niu, Zhichuan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2016, 52 : 68 - 74
  • [48] Preparation of superconducting epitaxial thin films of transition metal nitrides on silicon wafers by molecular beam epitaxy
    Inumaru, K
    Okamoto, H
    Yamanaka, S
    JOURNAL OF CRYSTAL GROWTH, 2002, 237 (237-239) : 2050 - 2054
  • [49] Molecular beam epitaxy growth and temperature-dependent electrical characterization of carbon-doped GaAs on GaAs(111)B
    Henksmeier, Tobias
    Shvarkov, Stepan
    Trapp, Alexander
    Reuter, Dirk
    JOURNAL OF CRYSTAL GROWTH, 2019, 512 : 164 - 168
  • [50] Molecular beam epitaxy and polarized excitonic emission of layered GaTe/GaAs thin films
    Avdienko, P. S.
    Sedova, I. V.
    Galimov, A. I.
    Rakhlin, M. V.
    Kirilenko, D. A.
    Sorokin, S. V.
    JOURNAL OF CRYSTAL GROWTH, 2022, 592