Product set estimates for non-commutative groups

被引:115
作者
Tao, Terence [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1007/s00493-008-2271-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the Plunnecke-Ruzsa and Balog-Szemeredi-Gowers theory of sum set estimates in the non-commutative setting, with discrete, continuous, and metric entropy formulations of these estimates. We also develop a Freiman-type inverse theorem for a special class of 2-step nilpotent groups, namely the Heisenberg groups with no 2-torsion in their centre.
引用
收藏
页码:547 / 594
页数:48
相关论文
共 35 条
[11]   On linear combinatorics III. Few directions and distorted lattices [J].
Elekes, G .
COMBINATORICA, 1999, 19 (01) :43-53
[12]   On linear combinatorics I. Concurrency - An algebraic approach [J].
Elekes, G .
COMBINATORICA, 1997, 17 (04) :447-458
[13]   On linear combinatorics II. Structure theorems via additive number theory [J].
Elekes, G .
COMBINATORICA, 1998, 18 (01) :13-25
[14]   On the combinatorics of projective mappings [J].
Elekes, G ;
Király, Z .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2001, 14 (03) :183-197
[15]   The structure of sets with few sums along a graph [J].
Elekes, Gyorgy ;
Ruzsa, Imre Z. .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (07) :1476-1500
[16]  
Freiman, 1973, TRANSLATIONS MATH MO, V37
[17]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588
[18]   A new proof of Szemeredi's theorem for arithmetic progressions of length four [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1998, 8 (03) :529-551
[19]   Compressions, convex geometry and the Freiman-Bilu theorem [J].
Green, B. ;
Tao, T. .
QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 :495-504
[20]  
GREEN B, FINITE FIELD MODELS