Product set estimates for non-commutative groups

被引:115
作者
Tao, Terence [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1007/s00493-008-2271-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop the Plunnecke-Ruzsa and Balog-Szemeredi-Gowers theory of sum set estimates in the non-commutative setting, with discrete, continuous, and metric entropy formulations of these estimates. We also develop a Freiman-type inverse theorem for a special class of 2-step nilpotent groups, namely the Heisenberg groups with no 2-torsion in their centre.
引用
收藏
页码:547 / 594
页数:48
相关论文
共 35 条
[1]   A STATISTICAL THEOREM OF SET ADDITION [J].
BALOG, A ;
SZEMEREDI, E .
COMBINATORICA, 1994, 14 (03) :263-268
[2]  
BILU Y, 1999, ASTERISQUE, V258, pR11
[3]   Estimates for the number of sums, and products and for exponential sums over subgroups in fields of prime order [J].
Bourgain, J ;
Konyagin, SV .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (02) :75-80
[4]   Mordell's exponential sum estimate revisited [J].
Bourgain, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) :477-499
[5]   Estimates on exponential sums related to the Diffie-Hellman distributions [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2005, 15 (01) :1-34
[6]   A sum-product estimate in finite fields, and applications [J].
Bourgain, J ;
Katz, N ;
Tao, T .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2004, 14 (01) :27-57
[7]   On the dimension of Kakeya sets and related maximal inequalities [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (02) :256-282
[8]   ON A PRODUCT OF FINITE SUBSETS IN A TORSION-FREE GROUP [J].
BRAILOVSKY, LV ;
FREIMAN, GA .
JOURNAL OF ALGEBRA, 1990, 130 (02) :462-476
[9]   On problems of Erdos and Rudin [J].
Chang, MC .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) :444-460
[10]   A polynomial bound in Freiman's theorem [J].
Chang, MC .
DUKE MATHEMATICAL JOURNAL, 2002, 113 (03) :399-419