A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions

被引:26
作者
Logemann, H.
Ryan, E. P.
Shvartsman, I.
机构
[1] Department of Mathematical Sciences, University of Bath, Bath
基金
英国工程与自然科学研究理事会;
关键词
asymptotic behaviour; differential-delay equations; hysteresis operators; stability;
D O I
10.1016/j.na.2007.05.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of differential-delay Systems with hysteresis is considered. Conditions ensuring boundedness of solutions and related asymptotic and integrability properties are expressed in terms of data associated with the linear component of the overall system and a Lipschitz constant associated with the hysteretic component. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:363 / 391
页数:29
相关论文
共 22 条
[1]  
[Anonymous], AVTOM TELEMEKH
[2]  
BARABANOV N, 1979, AVTOMAT TELEMEKH, V12, P5
[3]   Input-output stability of systems with backlash [J].
Barreiro, Antonio ;
Baños, Alfonso .
AUTOMATICA, 2006, 42 (06) :1017-1024
[4]   Asymptotically stable oscillations in systems with hysteresis nonlinearities [J].
Brokate, M ;
Pokrovskii, AV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 150 (01) :98-123
[5]  
BROKATE M, 1994, PHASE TRANSITIONS HY, P1
[6]  
Brokate M., 1996, HYSTERESIS PHASE TRA
[7]   Closed-loop position control of Preisach hystereses [J].
Gorbet, RB ;
Morris, KA .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2003, 14 (08) :483-495
[8]   Passivity-based stability and control of hysteresis in smart actuators [J].
Gorbet, RB ;
Morris, KA ;
Wang, DWL .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (01) :5-16
[9]  
Haddad WM, 2000, P AMER CONTR CONF, P4159, DOI 10.1109/ACC.2000.877004
[10]  
Jonsson U, 1998, INT J ROBUST NONLIN, V8, P279, DOI 10.1002/(SICI)1099-1239(199803)8:3<279::AID-RNC314>3.0.CO