Heterogeneous Single-Atom Catalysts for Electrochemical CO2Reduction Reaction

被引:545
|
作者
Li, Minhan [1 ]
Wang, Haifeng [1 ]
Luo, Wei [1 ]
Sherrell, Peter C. [2 ]
Chen, Jun [3 ]
Yang, Jianping [1 ]
机构
[1] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Int Joint Lab Adv Fiber & Low Dimens Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[3] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Australian Inst Innovat Mat, Intelligent Polymer Res Inst, Innovat Campus, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
CO(2)reduction reaction; electrocatalysts; metal-nitrogen sites; N-doped carbon; single-atom catalysts; ELECTROCATALYTIC CO2 REDUCTION; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; DOPED POROUS CARBON; OXYGEN REDUCTION; ACTIVE-SITES; EFFICIENT ELECTROREDUCTION; ELECTRO-REDUCTION; OXIDATION-STATE; NITROGEN SITES;
D O I
10.1002/adma.202001848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO(2)reduction reaction (CO2RR) is of great importance to tackle the rising CO(2)concentration in the atmosphere. The CO2RR can be driven by renewable energy sources, producing precious chemicals and fuels, with the implementation of this process largely relying on the development of low-cost and efficient electrocatalysts. Recently, a range of heterogeneous and potentially low-cost single-atom catalysts (SACs) containing non-precious metals coordinated to earth-abundant elements have emerged as promising candidates for the CO2RR. Unfortunately, the real catalytically active centers and the key factors that govern the catalytic performance of these SACs remain ambiguous. Here, this ambiguity is addressed by developing a fundamental understanding of the CO2RR-to-CO process on SACs, as CO accounts for the major product from CO2RR on SACs. The reaction mechanism, the rate-determining steps, and the key factors that control the activity and selectivity are analyzed from both experimental and theoretical studies. Then, the synthesis, characterization, and the CO2RR performance of SACs are discussed. Finally, the challenges and future pathways are highlighted in the hope of guiding the design of the SACs to promote and understand the CO2RR on SACs.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction
    Wang, Bingqing
    Chen, Shenghua
    Zhang, Zedong
    Wang, Dingsheng
    SMARTMAT, 2022, 3 (01): : 84 - 110
  • [22] Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction
    Yang, Xiao
    Tat, Trinny
    Libanori, Alberto
    Cheng, Jun
    Xuan, Xiaoxu
    Liu, Niu
    Yang, Xian
    Zhou, Junhu
    Nashalian, Ardo
    Chen, Jun
    MATERIALS TODAY, 2021, 45 : 54 - 61
  • [23] Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3
    Yang, Yun
    Liu, Shixi
    Fu, Gang
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (26): : 6110 - 6118
  • [24] Single-Atom catalysts for oxygen reduction reaction and methanol oxidation reaction
    Kaur, Jasvinder
    Sharma, Vivek
    Das, Dipak Kumar
    Pandit, Bidhan
    Samdani, Mohd Shahzad
    Shkir, Mohd
    Manthrammel, M. Aslam
    Nangan, Senthilkumar
    Angadi, V. Jagadeesha
    Ubaidullah, Mohd
    FUEL, 2024, 358
  • [25] A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction
    Xiao, Meiling
    Zhu, Jianbing
    Li, Gaoran
    Li, Na
    Li, Shuang
    Cano, Zachary Paul
    Ma, Lu
    Cui, Peixin
    Xu, Pan
    Jiang, Gaopeng
    Jin, Huile
    Wang, Shun
    Wu, Tianpin
    Lu, Jun
    Yu, Aiping
    Su, Dong
    Chen, Zhongwei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (28) : 9640 - 9645
  • [26] Review-Non-Noble Metal-Based Single-Atom Catalysts for Efficient Electrochemical CO2 Reduction Reaction
    Choi, Hyeonuk
    Lee, Dong-Kyu
    Han, Mi-Kyung
    Janani, Gnanaprakasam
    Surendran, Subramani
    Kim, Jin Hyeok
    Kim, Jung Kyu
    Cho, Hoonsung
    Sim, Uk
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (16)
  • [27] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Li, Yalong
    Xu, Xiaolong
    Ai, Zizheng
    Zhang, Baoguo
    Shi, Dong
    Yang, Mingzhi
    Hu, Haixiao
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    IONICS, 2023, 29 (02) : 455 - 481
  • [28] Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction
    Wan, Chengzhang
    Duan, Xiangfeng
    Huang, Yu
    ADVANCED ENERGY MATERIALS, 2020, 10 (14)
  • [29] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Yalong Li
    Xiaolong Xu
    Zizheng Ai
    Baoguo Zhang
    Dong Shi
    Mingzhi Yang
    Haixiao Hu
    Yongliang Shao
    Yongzhong Wu
    Xiaopeng Hao
    Ionics, 2023, 29 : 455 - 481
  • [30] Molecular Design of Single-Atom Catalysts for Oxygen Reduction Reaction
    Wan, Chengzhang
    Duan, Xiangfeng
    Huang, Yu
    Advanced Energy Materials, 2020, 10 (14):