Heterogeneous Single-Atom Catalysts for Electrochemical CO2Reduction Reaction

被引:549
|
作者
Li, Minhan [1 ]
Wang, Haifeng [1 ]
Luo, Wei [1 ]
Sherrell, Peter C. [2 ]
Chen, Jun [3 ]
Yang, Jianping [1 ]
机构
[1] Donghua Univ, State Key Lab Modificat Chem Fibers & Polymer Mat, Int Joint Lab Adv Fiber & Low Dimens Mat, Coll Mat Sci & Engn, Shanghai 201620, Peoples R China
[2] Univ Melbourne, Dept Chem Engn, Parkville, Vic 3010, Australia
[3] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Australian Inst Innovat Mat, Intelligent Polymer Res Inst, Innovat Campus, Wollongong, NSW 2522, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
CO(2)reduction reaction; electrocatalysts; metal-nitrogen sites; N-doped carbon; single-atom catalysts; ELECTROCATALYTIC CO2 REDUCTION; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE REDUCTION; DOPED POROUS CARBON; OXYGEN REDUCTION; ACTIVE-SITES; EFFICIENT ELECTROREDUCTION; ELECTRO-REDUCTION; OXIDATION-STATE; NITROGEN SITES;
D O I
10.1002/adma.202001848
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrochemical CO(2)reduction reaction (CO2RR) is of great importance to tackle the rising CO(2)concentration in the atmosphere. The CO2RR can be driven by renewable energy sources, producing precious chemicals and fuels, with the implementation of this process largely relying on the development of low-cost and efficient electrocatalysts. Recently, a range of heterogeneous and potentially low-cost single-atom catalysts (SACs) containing non-precious metals coordinated to earth-abundant elements have emerged as promising candidates for the CO2RR. Unfortunately, the real catalytically active centers and the key factors that govern the catalytic performance of these SACs remain ambiguous. Here, this ambiguity is addressed by developing a fundamental understanding of the CO2RR-to-CO process on SACs, as CO accounts for the major product from CO2RR on SACs. The reaction mechanism, the rate-determining steps, and the key factors that control the activity and selectivity are analyzed from both experimental and theoretical studies. Then, the synthesis, characterization, and the CO2RR performance of SACs are discussed. Finally, the challenges and future pathways are highlighted in the hope of guiding the design of the SACs to promote and understand the CO2RR on SACs.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO2 Reduction
    Han, Shu-Guo
    Ma, Dong-Dong
    Zhu, Qi-Long
    SMALL METHODS, 2021, 5 (08)
  • [2] Electrochemical CO2 reduction of graphene single-atom/cluster catalysts
    Gao, Yongze
    Zhao, Mengdie
    Jiang, Liyun
    Yu, Qi
    MOLECULAR CATALYSIS, 2024, 562
  • [3] Recent advances in the rational design of single-atom catalysts for electrochemical CO2 reduction
    Gu, Huoliang
    Wu, Jing
    Zhang, Liming
    NANO RESEARCH, 2022, 15 (11) : 9747 - 9763
  • [4] Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry
    Yuan, Wenyu
    Ma, Yiyuan
    Wu, Heng
    Cheng, Laifei
    JOURNAL OF ENERGY CHEMISTRY, 2022, 65 : 254 - 279
  • [5] Why heterogeneous single-atom catalysts preferentially produce CO in the electrochemical CO2 reduction reaction
    Wang, Yu
    Liu, Tianyang
    Li, Yafei
    CHEMICAL SCIENCE, 2022, 13 (21) : 6366 - 6372
  • [6] The atomic-level regulation of single-atom site catalysts for the electrochemical CO2 reduction reaction
    Qu, Qingyun
    Ji, Shufang
    Chen, Yuanjun
    Wang, Dingsheng
    Li, Yadong
    CHEMICAL SCIENCE, 2021, 12 (12) : 4201 - 4215
  • [7] Solar-Driven Electrochemical CO2Reduction with Heterogeneous Catalysts
    Creissen, Charles E.
    Fontecave, Marc
    ADVANCED ENERGY MATERIALS, 2021, 11 (43)
  • [8] Neighboring effect in single-atom catalysts for the electrochemical carbon dioxide reduction reaction
    Wong, Hon Ho
    Sun, Mingzi
    Wu, Tong
    Chan, Cheuk Hei
    Lu, Lu
    Lu, Qiuyang
    Chen, Baian
    Huang, Bolong
    ESCIENCE, 2024, 4 (01):
  • [9] Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO
    Wang, Huijie
    Tong, Yun
    Chen, Pengzuo
    NANO ENERGY, 2023, 118
  • [10] Single-atom catalysts: stimulating electrochemical CO2 reduction reaction in the industrial era
    Zhang, Zedong
    Wang, Dingsheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (11) : 5863 - 5877