Thermal conductivity of boron nitride nanoribbons: Anisotropic effects and boundary scattering

被引:34
作者
Chen, Yin-Chung [2 ]
Lee, Shang-Chin [2 ]
Liu, Te-Huan [2 ]
Chang, Chien-Cheng [1 ,2 ,3 ]
机构
[1] Guangxi Univ, Coll Mech Engn, Nanning 530004, Peoples R China
[2] Natl Taiwan Univ, Inst Appl Mech, 1 Sec 4,Roosevelt Rd, Taipei 106, Taiwan
[3] Natl Taiwan Univ, Ctr Adv Study Theoret Sci, Taipei 106, Taiwan
关键词
Molecular dynamics; Boltzmann transport equation; Anisotropic thermal conductivity; Boron nitride nanoribbon; TEMPERATURE-DEPENDENT RAMAN; GRAPHENE NANORIBBONS; TRANSPORT; HEAT;
D O I
10.1016/j.ijthermalsci.2015.02.005
中图分类号
O414.1 [热力学];
学科分类号
摘要
Previous studies on the thermal conductivity of single-layer boron nitride nanoribbons (BNNRs) are focused on ribbons along the zigzag (ZZ) and the armchair (AC) directions. In this study, we model the thermal conductivity of BNNRs in various transport directions by means of the non-equilibrium molecular dynamics (NEMD) simulations and the Boltzmann transport equation (BTE) under the relaxation time approximation (RTA). In particular, the values of the edge specularity for the boundary scattering, which is closely related to the edge roughness, are obtained at different chiral angles, thereby estimating the anisotropic effects of boundary scattering. It is found that the thermal conductivity has a local maximum at the chiral angle of 19.11, at which the edge specularity also attains a local maximum. The thermal conductivity generally increases with increasing the ribbon length, yet its value is saturated at a certain length, which significantly depends on the chiral angle. These unusual thermal properties suggest that we may choose optimized structures to achieve better applications of BNNRs in electronic industry. (C) 2015 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 55 条
[1]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[2]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   STABILITY AND BAND-GAP CONSTANCY OF BORON-NITRIDE NANOTUBES [J].
BLASE, X ;
RUBIO, A ;
LOUIE, SG ;
COHEN, ML .
EUROPHYSICS LETTERS, 1994, 28 (05) :335-340
[5]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[6]   Note on the conduction of heat in crystals [J].
Casimir, HBG .
PHYSICA, 1938, 5 :495-500
[7]   Isotope effect on the thermal conductivity of boron nitride nanotubes [J].
Chang, C. W. ;
Fennimore, A. M. ;
Afanasiev, A. ;
Okawa, D. ;
Ikuno, T. ;
Garcia, H. ;
Li, Deyu ;
Majumdar, A. ;
Zettl, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (08)
[8]  
Chen G., 2005, PAPPAL SER MECH ENG
[9]   Boron nitride substrates for high-quality graphene electronics [J].
Dean, C. R. ;
Young, A. F. ;
Meric, I. ;
Lee, C. ;
Wang, L. ;
Sorgenfrei, S. ;
Watanabe, K. ;
Taniguchi, T. ;
Kim, P. ;
Shepard, K. L. ;
Hone, J. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :722-726
[10]   Giant thermoelectric effect in graphene [J].
Dragoman, D. ;
Dragoman, M. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)