Local restricted edge connectivity and restricted edge connectivity of graphs

被引:0
|
作者
Guo, Litao [1 ]
Guo, Xiaofeng [2 ]
机构
[1] Xiamen Univ Technol, Sch Appl Math, Xiamen 361024, Fujian, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
关键词
Local restricted edge connectivity; Restricted edge connectivity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a connected graph and k >= 1 be an integer. Local k-restricted edge connectivity lambda(k) (X, Y) of X, Y in G is the maximum number of the edge disjoint X-Y paths for X,Y subset of V with vertical bar X vertical bar = vertical bar Y vertical bar = k,X boolean AND Y = empty set, G[X] and G[Y] are connected. k-restricted edge connectivity of G is defined as lambda(k)(C) = min{lambda(k)(X,Y) : X,Y subset of V, vertical bar X vertical bar = vertical bar Y vertical bar = k,X boolean AND Y = empty set,G[X] and G[Y] are connected}. Then G is local optimal k-restricted edge connected, if lambda(k)(X,Y) =min{omega(X),omega(Y)} for all X,Y subset of V with vertical bar X vertical bar = vertical bar Y vertical bar = k, G[X] and G[Y] are connected, where omega(X) = vertical bar[X, X]vertical bar. If lambda(k)(G) = xi(k)(G) where xi(k)(G) = min{omega(X) : U subset of V, vertical bar U vertical bar = k and G[U] is connected}, then G is called lambda(k)-optimal. In this paper, we obtain several sufficient conditions for a graph to be lambda(3)-optimal (or local optimal k-restricted edge connected).
引用
收藏
页码:165 / 172
页数:8
相关论文
共 50 条
  • [1] Local-restricted-edge-connectivity of graphs
    Liu, Juan
    Zhang, Xindong
    Meng, Jixiang
    ARS COMBINATORIA, 2014, 113 : 97 - 104
  • [2] Restricted edge connectivity of edge transitive graphs
    Zhang, Z
    Meng, JX
    ARS COMBINATORIA, 2006, 78 : 297 - 308
  • [3] Restricted Edge Connectivity of Harary Graphs
    Liu, Qinghai
    Huang, Xiaohui
    Zhang, Zhao
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 113 - 125
  • [4] On restricted edge-connectivity of graphs
    Xu , JM
    Xu, KL
    DISCRETE MATHEMATICS, 2002, 243 (1-3) : 291 - 298
  • [5] Restricted edge connectivity of graphs on degree
    Guo, Litao
    Lin, Bernard L. S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (04) : 3955 - 3958
  • [6] On optimizing restricted edge connectivity of graphs
    Wang, Jingyu
    Ou, Jianping
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2012, 14 (05) : 851 - 855
  • [7] On a kind of restricted edge connectivity of graphs
    Meng, JX
    Ji, YH
    DISCRETE APPLIED MATHEMATICS, 2002, 117 (1-3) : 183 - 193
  • [8] The edge-connectivity and restricted edge-connectivity of a product of graphs
    Balbuena, C.
    Cera, M.
    Dianez, A.
    Garcia-Vazquez, P.
    Marcote, X.
    DISCRETE APPLIED MATHEMATICS, 2007, 155 (18) : 2444 - 2455
  • [9] On restricted edge connectivity of strong product graphs
    Ou, Jianping
    Zhao, Weisheng
    ARS COMBINATORIA, 2015, 123 : 55 - 64
  • [10] Super Restricted Edge Connectivity of Regular Graphs
    Ou Jianping
    Fuji Zhang
    Graphs and Combinatorics, 2005, 21 : 459 - 467