ON THE EVALUATION COMPLEXITY OF COMPOSITE FUNCTION MINIMIZATION WITH APPLICATIONS TO NONCONVEX NONLINEAR PROGRAMMING

被引:77
作者
Cartis, Coralia [1 ]
Gould, Nicholas I. M. [2 ]
Toint, Philippe L. [3 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
[2] Rutherford Appleton Lab, Computat Sci & Engn Dept, Chilton OX11 0QX, Oxon, England
[3] FUNDP Univ Namur, Dept Math, B-5000 Namur, Belgium
基金
英国工程与自然科学研究理事会;
关键词
nonlinear programming; nonsmooth optimization; steepest descent methods; trust region methods; quadratic regularization methods; exact penalty methods; global complexity bounds; global rate of convergence; OPTIMIZATION; CONVERGENCE; ALGORITHMS;
D O I
10.1137/11082381X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We estimate the worst-case complexity of minimizing an unconstrained, nonconvex composite objective with a structured nonsmooth term by means of some first-order methods. We find that it is unaffected by the nonsmoothness of the objective in that a first-order trust-region or quadratic regularization method applied to it takes at most O(epsilon(-2)) function evaluations to reduce the size of a first-order criticality measure below epsilon. Specializing this result to the case when the composite objective is an exact penalty function allows us to consider the objective-and constraint-evaluation worst-case complexity of nonconvex equality-constrained optimization when the solution is computed using a first-order exact penalty method. We obtain that in the reasonable case when the penalty parameters are bounded, the complexity of reaching within epsilon of a KKT point is at most O(epsilon(-2)) problem evaluations, which is the same in order as the function-evaluation complexity of steepest-descent methods applied to unconstrained, nonconvex smooth optimization.
引用
收藏
页码:1721 / 1739
页数:19
相关论文
共 15 条
[1]  
[Anonymous], 2013, Introductory lectures on convex optimization: A basic course
[2]  
[Anonymous], TRUST REGION METHODS, DOI DOI 10.1137/1.9780898719857
[3]  
[Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
[4]   On the convergence of successive linear-quadratic programming algorithms [J].
Byrd, RH ;
Gould, NIM ;
Nocedal, J ;
Waltz, RA .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :471-489
[5]   ON THE COMPLEXITY OF STEEPEST DESCENT, NEWTON'S AND REGULARIZED NEWTON'S METHODS FOR NONCONVEX UNCONSTRAINED OPTIMIZATION PROBLEMS [J].
Cartis, C. ;
Gould, N. I. M. ;
Toint, Ph. L. .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (06) :2833-2852
[6]  
CARTIS C, IMA J NUMER IN PRESS, P87006
[7]   Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity [J].
Cartis, Coralia ;
Gould, Nicholas I. M. ;
Toint, Philippe L. .
MATHEMATICAL PROGRAMMING, 2011, 130 (02) :295-319
[8]   Nonlinear programming without a penalty function or a filter [J].
Gould, N. I. M. ;
Toint, Ph. L. .
MATHEMATICAL PROGRAMMING, 2010, 122 (01) :155-196
[9]   A recursive l∞-trust-region method for bound-constrained nonlinear optimization [J].
Gratton, Serge ;
Mouffe, Melodie ;
Toint, Philippe L. ;
Weber-Mendonca, Melissa .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2008, 28 (04) :827-861
[10]   Recursive trust-region methods for multiscale nonlinear optimization [J].
Gratton, Serge ;
Sartenaer, Annick ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2008, 19 (01) :414-444