DNA polymerase theta (Polθ) - an error-prone polymerase necessary for genome stability

被引:64
|
作者
Brambati, Alessandra [1 ]
Barry, Raymond Mario [1 ]
Sfeir, Agnel [1 ]
机构
[1] NYU, Sch Med, Skirball Inst Biomol Med, Dept Cell Biol, New York, NY 10016 USA
关键词
DOUBLE-STRAND BREAKS; HOMOLOGOUS-RECOMBINATION; LIGASE-III; HELICASE DOMAIN; END RESECTION; REPAIR; MECHANISM; FUSION; NHEJ; REPLICATION;
D O I
10.1016/j.gde.2020.02.017
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian cells have evolved multiple pathways to repair DNA double strand breaks (DSBs) and ensure genome stability. In addition to non-homologous end-joining (NHEJ) and homologous recombination (HR), cells evolved an error-prone repair pathway termed microhomology-mediated end joining (MMEJ). The mutagenic outcome of MMEJ derives from the activity of DNA polymerase theta (Polu) - a multidomain enzyme that is minimally expressed in normal tissue but overexpressed in tumors. Polu expression is particularly crucial for the proliferation of HR deficient cancer cells. As a result, this mutagenic repair emerged as an attractive target for cancer therapy, and inhibitors are currently in pre-clinical development. Here, we review the multifunctionality of this enigmatic polymerase, focusing on its role during DSB repair in mammalian cells and its impact on cancer genomes.
引用
收藏
页码:119 / 126
页数:8
相关论文
共 50 条
  • [1] DNA Polymerase θ: a Multifunctional and Error-prone DNA End Repair Enzyme
    Wang, Yao
    Chen, Guo-Jiang
    Feng, Jian-Nan
    Shi, Yan-Chun
    Wang, Jing
    Zheng, Yuan-Qiang
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2024, 51 (03) : 493 - 503
  • [2] Structural basis of error-prone DNA synthesis by DNA polymerase θ
    Li, Chuxuan
    Maksoud, Leora M.
    Gao, Yang
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [3] An Error-Prone Polymerase in the Fight against Cancer
    Achar, Yathish Jagadheesh
    Foiani, Marco
    CELL, 2019, 176 (06) : 1241 - 1243
  • [4] Construction of a highly error-prone DNA polymerase for developing organelle mutation systems
    Ji, Junwei
    Day, Anil
    NUCLEIC ACIDS RESEARCH, 2020, 48 (21) : 11868 - 11879
  • [5] A Unique B-Family DNA Polymerase Facilitating Error-Prone DNA Damage Tolerance in Crenarchaeota
    Feng, Xu
    Liu, Xiaotong
    Xu, Ruyi
    Zhao, Ruiliang
    Feng, Wenqian
    Liao, Jianglan
    Han, Wenyuan
    She, Qunxin
    FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [6] The Discovery of Error-prone DNA Polymerase V and Its Unique Regulation by RecA and ATP
    Goodman, Myron F.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (39) : 26772 - 26782
  • [7] Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination
    Pomerantz, Richard T.
    Kurth, Isabel
    Goodman, Myron F.
    O'Donnell, Mike E.
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (06) : 748 - +
  • [8] A Nucleotide-Analogue-Induced Gain of Function Corrects the Error-Prone Nature of Human DNA Polymerase iota
    Ketkar, Amit
    Zafar, Maroof K.
    Banerjee, Surajit
    Marquez, Victor E.
    Egli, Martin
    Eoff, Robert L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (25) : 10698 - 10705
  • [9] Error-prone bypass patch by a low-fidelity variant of DNA polymerase zeta in human cells
    Suzuki, Tetsuya
    Sassa, Akira
    Gruz, Petr
    Gupta, Ramesh C.
    Johnson, Francis
    Adachi, Noritaka
    Nohmi, Takehiko
    DNA REPAIR, 2021, 100
  • [10] Packaging host RNAs in small RNA viruses An inevitable consequence of an error-prone polymerase?
    Routh, Andrew
    Domitrovic, Tatiana
    Johnson, John E.
    CELL CYCLE, 2012, 11 (20) : 3713 - +