Nonlinear damping of zonal flows

被引:2
作者
Koshkarov, O. [1 ]
Smolyakov, A. I. [1 ,2 ]
Mendonca, J. T. [3 ]
机构
[1] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[2] Natl Res Ctr Kurchatov Inst, Pl Akad Kurchatova 1, Moscow 123182, Russia
[3] Inst Super Tecn, Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
基金
加拿大自然科学与工程研究理事会;
关键词
DRIFT WAVES; TURBULENCE; GENERATION; PLASMAS; INSTABILITY; EXCITATION; SHEAR;
D O I
10.1134/S1063780X16080067
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The modulatonal instability theory for the generation of large-scale (zonal) modes by drift modes has been extended to the second order including the effects of finite amplitude zonal flows, I center dot (q) . The nonlinear (second-order) sidebands are included in the perturbative expansion to derive the nonlinear equation for the evolution of I center dot (q) . It is shown that effects of finite I center dot (q) reduce the growth rate of zonal flow with a possibility of oscillatory regimes at a later stage.
引用
收藏
页码:769 / 772
页数:4
相关论文
共 17 条
[1]   Quasilinear analysis of the zonal flow back-reaction on ion-temperature-gradient mode turbulence [J].
Anderson, Johan ;
Li, Jiquan ;
Kishimoto, Yasuaki ;
Kim, Eun-jin .
PHYSICS LETTERS A, 2008, 372 (38) :5987-5990
[3]   Excitation of zonal flow by drift waves in toroidal plasmas [J].
Chen, L ;
Lin, ZH ;
White, R .
PHYSICS OF PLASMAS, 2000, 7 (08) :3129-3132
[4]   Modulational instability of Rossby and drift waves and generation of zonal jets [J].
Connaughton, Colm P. ;
Nadiga, Balasubramanya T. ;
Nazarenko, Sergey V. ;
Quinn, Brenda E. .
JOURNAL OF FLUID MECHANICS, 2010, 654 :207-231
[5]   Zonal flows in plasma - a review [J].
Diamond, PH ;
Itoh, SI ;
Itoh, K ;
Hahm, TS .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (05) :R35-R161
[6]   The modulational instability in the extended Hasegawa-Mima equation with a finite Larmor radius [J].
Gallagher, S. ;
Hnat, B. ;
Connaughton, C. ;
Nazarenko, S. ;
Rowlands, G. .
PHYSICS OF PLASMAS, 2012, 19 (12)
[7]   Shear flow generation by drift waves revisited [J].
Guzdar, PN ;
Kleva, RG ;
Chen, L .
PHYSICS OF PLASMAS, 2001, 8 (02) :459-462
[8]   PSEUDO-3-DIMENSIONAL TURBULENCE IN MAGNETIZED NONUNIFORM PLASMA [J].
HASEGAWA, A ;
MIMA, K .
PHYSICS OF FLUIDS, 1978, 21 (01) :87-92
[9]   Physics of zonal flows [J].
Itoh, K. ;
Itoh, S. -I. ;
Diamond, P. H. ;
Hahm, T. S. ;
Fujisawa, A. ;
Tynan, G. R. ;
Yagi, M. ;
Nagashima, Y. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[10]  
Landau L. D., 1986, FLUID MECH