Lie derived length and involutions in group algebras

被引:6
作者
Balogh, Zsolt [1 ]
机构
[1] Univ Coll Nyiregyhaza, Inst Math & Comp Sci, Nyiregyhaza, Hungary
关键词
GROUP-RINGS; ELEMENTS;
D O I
10.1016/j.jpaa.2011.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a group such that the set of p-elements of G forms a finite nonabelian subgroup, where p is an odd prime, and let F be a field of characteristic p. In this paper we prove that the lower bound of the Lie derived length of the group algebra FG given by Shalev in [11] is also a lower bound for the Lie derived length of the set of symmetric elements of FG for every involution which is linear extension of an involutive anti-automorphism of G. Furthermore, we provide counterexamples to the interesting cases which are not covered by the main theorem. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1282 / 1287
页数:6
相关论文
共 11 条
[1]   RINGS WITH INVOLUTION [J].
AMITSUR, SA .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :99-&
[2]   A note on the derived length of the unit group of a modular group algebra [J].
Baginski, C .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (10) :4905-4913
[3]  
Balogh Z, 2008, JP J ALGEBR NUMBER T, V12, P191
[4]  
JENNINGS SA, 1941, T AM MATH SOC, V50, P175
[5]   On symmetric elements and symmetric units in group rings [J].
Jespers, E ;
Marín, MR .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :727-736
[6]   ANTISYMMETRIC ELEMENTS IN GROUP RINGS [J].
Jespers, Eric ;
Ruiz Marin, Manuel .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2005, 4 (04) :341-353
[7]  
Juhász T, 2006, PUBL MATH-DEBRECEN, V68, P243
[8]  
Lee GT, 2010, ALGEBRA APPL, V12, P1, DOI 10.1007/978-1-84996-504-0
[9]   Group algebras whose symmetric and skew elements are Lie solvable [J].
Lee, Gregory T. ;
Sehgal, Sudarshan K. ;
Spinelli, Ernesto .
FORUM MATHEMATICUM, 2009, 21 (04) :661-671
[10]   LIE SOLVABLE GROUP RINGS [J].
PASSI, IBS ;
PASSMAN, DS ;
SEHGAL, SK .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (04) :748-757