Completely bounded maps and invariant subspaces

被引:1
作者
Alaghmandan, M. [1 ]
Todorov, I. G. [2 ,3 ]
Turowska, L. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Queens Univ Belfast, Math Sci Res Ctr, Belfast BT7 1NN, Antrim, North Ireland
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Chalmers Univ Technoloey, Dept Math Sci, Gothenburg 41296, Sweden
[5] Univ Gothenburg, Gothenburg 41296, Sweden
关键词
ALGEBRAS; MULTIPLIERS;
D O I
10.1007/s00209-019-02255-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If G is a locally compact quantum group, we characterise the completely bounded L infinity(G)'-bimodule maps that send C0(G) in terms of the properties of the corresponding elements of the normal Haagerup tensor product L infinity(G)circle times sigma hL infinity(G). As a consequence, we obtain an intrinsic characterisation of the normal completely bounded L infinity(G)'-bimodule maps that leave L infinity invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 28 条
  • [11] MODULE MAPS AND HOCHSCHILD-JOHNSON COHOMOLOGY
    EFFROS, EG
    KISHIMOTO, A
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1987, 36 (02) : 257 - 276
  • [12] Eymard P., 1964, Bull. Soc. Math. France, V92, P181, DOI DOI 10.24033/BSMF.1607
  • [13] APPROXIMATION PROPERTIES FOR GROUP C-ASTERISK-ALGEBRAS AND GROUP VON-NEUMANN-ALGEBRAS
    HAAGERUP, U
    KRAUS, J
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 344 (02) : 667 - 699
  • [14] Haagerup U., DECOMPOSITION UNPUB
  • [15] Completely bounded multipliers over locally compact quantum groups
    Hu, Zhiguo
    Neufang, Matthias
    Ruan, Zhong-Jin
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 1 - 39
  • [16] A REPRESENTATION THEOREM FOR LOCALLY COMPACT QUANTUM GROUPS
    Junge, Marius
    Neufang, Matthias
    Ruan, Zhong-Jin
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (03) : 377 - 400
  • [17] Katznelson Y, 2004, INTRO HARMONIC ANAL, DOI DOI 10.1017/CBO9781139165372
  • [18] THE WEAK HAAGERUP PROPERTY
    Knudby, Soren
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (05) : 3469 - 3508
  • [19] Locally compact quantum groups
    Kustermans, J
    Vaes, S
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06): : 837 - 934
  • [20] Neufang M., 2000, THESIS