Completely bounded maps and invariant subspaces

被引:1
作者
Alaghmandan, M. [1 ]
Todorov, I. G. [2 ,3 ]
Turowska, L. [4 ,5 ]
机构
[1] Carleton Univ, Sch Math & Stat, Ottawa, ON H1S 5B6, Canada
[2] Queens Univ Belfast, Math Sci Res Ctr, Belfast BT7 1NN, Antrim, North Ireland
[3] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[4] Chalmers Univ Technoloey, Dept Math Sci, Gothenburg 41296, Sweden
[5] Univ Gothenburg, Gothenburg 41296, Sweden
关键词
ALGEBRAS; MULTIPLIERS;
D O I
10.1007/s00209-019-02255-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a description of certain invariance properties of completely bounded bimodule maps in terms of their symbols. If G is a locally compact quantum group, we characterise the completely bounded L infinity(G)'-bimodule maps that send C0(G) in terms of the properties of the corresponding elements of the normal Haagerup tensor product L infinity(G)circle times sigma hL infinity(G). As a consequence, we obtain an intrinsic characterisation of the normal completely bounded L infinity(G)'-bimodule maps that leave L infinity invariant, extending and unifying results, formulated in the current literature separately for the commutative and the co-commutative cases.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 28 条
  • [1] Completely bounded bimodule maps and spectral synthesis
    Alaghmandan, M.
    Todorov, I. G.
    Turowska, L.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2017, 28 (10)
  • [2] [Anonymous], 2010, DISSERTATIONES MATH
  • [3] [Anonymous], 2001, THESIS
  • [4] OPERATOR ALGEBRAS AND INVARIANT SUBSPACES
    ARVESON, W
    [J]. ANNALS OF MATHEMATICS, 1974, 100 (03) : 433 - 532
  • [5] Blecher D.P., 2004, London Mathematical Society Monographs New Series, V30
  • [6] THE DUAL OF THE HAAGERUP TENSOR PRODUCT
    BLECHER, DP
    SMITH, RR
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1992, 45 : 126 - 144
  • [7] BOZEJKO M, 1984, B UNIONE MAT ITAL, V3A, P297
  • [8] Brown N., 2008, C ALGEBRAS FINITE DI
  • [9] MULTIPLIERS OF THE FOURIER ALGEBRAS OF SOME SIMPLE LIE-GROUPS AND THEIR DISCRETE-SUBGROUPS
    DECANNIERE, J
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 1985, 107 (02) : 455 - 500
  • [10] Effros EG, 2003, J OPERAT THEOR, V50, P131