Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems

被引:23
作者
Xue, Yan-Fang [1 ,2 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Dept Math, Chongqing 400715, Peoples R China
[2] Xinyang Normal Univ, Coll Math & Informat Sci, Xinyang City 464000, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
discrete Hamiltonian systems; periodic solution; critical points; (PS) condition; local linking;
D O I
10.1016/j.amc.2007.06.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some multiplicity results are obtained for periodic solutions of the nonautonomous superquadratic second-order discrete Hamiltonian systems Delta(2)u(t - 1) + Delta F(t, u(t)) = 0 for all t is an element of Z by using critical point theory, especially, a three critical points theorem proposed by Brezis and Nirenberg. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:494 / 500
页数:7
相关论文
共 18 条
[1]   EQUIVALENCE OF DISCRETE EULER EQUATIONS AND DISCRETE HAMILTONIAN-SYSTEMS [J].
AHLBRANDT, CD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 180 (02) :498-517
[2]   Linear Hamiltonian difference systems: Disconjugacy and Jacobi-type conditions [J].
Bohner, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (03) :804-826
[3]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[4]   DISCONJUGACY, DISFOCALITY, AND OSCILLATION OF 2ND-ORDER DIFFERENCE-EQUATIONS [J].
CHEN, SZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 107 (02) :383-394
[5]  
Elaydi S., 1994, FUNKC EKVACIOJ-SER I, V37, P401
[6]   DISCONJUGACY FOR LINEAR HAMILTONIAN DIFFERENCE-SYSTEMS [J].
ERBE, LH ;
YAN, PX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (02) :355-367
[7]   Periodic and subharmonic solutions for superquadratic discrete Hamiltonian systems [J].
Guo, ZM ;
Yu, JS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (7-8) :969-983
[8]   The existence of periodic and subharmonic solutions of subquadratic second order difference equations [J].
Guo, ZM ;
Yu, JS .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :419-430
[9]  
Guo ZM, 2003, SCI CHINA SER A, V46, P506
[10]  
HARTMAN P, 1978, T AM MATH SOC, V246, P1