Using Particle Swarm Optimization Algorithm for Transformer Transient Study

被引:0
作者
Rashtchi, Vahid [1 ,2 ]
Rahimpour, Ebrahim [3 ]
Mirzaei, Jaber [1 ]
机构
[1] Zanjan Univ, Dept Elect Engn, Zanjan, Iran
[2] Zanjan Univ, Fac Engn, Zanjan, Iran
[3] ABB AG, Power Prod Div, Transformers, D-53604 Bad Honnef, Germany
来源
INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE | 2011年 / 6卷 / 03期
关键词
Transformer; Transient Model; Parameter Identification; Particle Swarm Optimization (PSO); MODEL; WINDINGS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The R-C-L-M model of power transformer is able to simulate the high frequency behavior of the magnetic and electric filed inside transformer. This model is used not only in design step for studying transient phenomena but also during operation for detecting mechanical faults. The model is obtained from geometrical structure and the material properties of the transformer. While the precision of the model depends strongly on the precision of its parameters, the accuracy of these parameters calculated by analytical formulas is limited due to different reasons. In this paper a particle swarm optimization (PSO) algorithm is introduced as a method to identify the parameters of the R-C-L-M Model, which are more precise than the parameters achieved by common formulae. Copyright (C) 2011 Praise Worthy Prize S.r.L - All rights reserved.
引用
收藏
页码:1174 / 1180
页数:7
相关论文
共 50 条
  • [31] Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm
    Elsheikh, Ahmed
    Helmy, Yahya
    Abouelseoud, Yasmine
    Elsherif, Ahmed
    JOURNAL OF ELECTRICAL SYSTEMS, 2014, 10 (01) : 63 - 77
  • [32] Gridless GLRT for Tomographic SAR Detection Using Particle Swarm Optimization Algorithm
    Haddad, Nabil
    Budillon, Alessandra
    Hadj-Rabah, Karima
    Bouaraba, Azzedine
    Harkati, Lekhmissi
    Benbouzid, Mohammed Amine
    Schirinzi, Gilda
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [33] An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization
    Mammeri, Elhachemi
    Ahriche, Aimad
    Necaibia, Ammar
    Bouraiou, Ahmed
    Mekhilef, Saad
    Dabou, Rachid
    Ziane, Abderrezzaq
    ELECTRICAL ENGINEERING, 2023, 105 (06) : 4525 - 4548
  • [34] Predicting saturated hydraulic conductivity using particle swarm optimization and genetic algorithm
    Nematolahi, Melika
    Jalali, Vahidreza
    Mehrizi, Majid Hejazi
    ARABIAN JOURNAL OF GEOSCIENCES, 2018, 11 (16)
  • [35] Simultaneous Determination of Multicomponent by Wavelength Selection Using Particle Swarm Optimization Algorithm
    Tao Qiu-Bo
    Shen Qi
    Zhang Xiao-Ya
    Liu Hong
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2009, 37 (08) : 1197 - 1200
  • [36] Particle Swarm Optimization Algorithm for Voltage Stability Improvement using Multiple STATCOM
    Kumarasamy, K.
    Raghavan, R.
    2012 INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ELECTRICAL ENGINEERING AND ENERGY MANAGEMENT (ICETEEEM - 2012), 2012,
  • [37] An enhanced battery model using a hybrid genetic algorithm and particle swarm optimization
    Elhachemi Mammeri
    Aimad Ahriche
    Ammar Necaibia
    Ahmed Bouraiou
    Saad Mekhilef
    Rachid Dabou
    Abderrezzaq Ziane
    Electrical Engineering, 2023, 105 (6) : 4525 - 4548
  • [38] Testing of a Modified Particle Swarm Optimization Algorithm Using Different Benchmark Functions
    Hamdan, Shawkat
    El Zawawi, Amr
    SOFA 2009: 3RD INTERNATIONAL WORKSHOP ON SOFT COMPUTING APPLICATIONS, PROCEEDINGS, 2009, : 113 - 116
  • [39] 3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm
    Hoseiniasl, Mehrdad
    Fesharaki, Javad Jafari
    JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2020, 6 (04): : 823 - 840
  • [40] Parameter Identification of Doubly Fed Induction Generator (DFIG) using Particle Swarm Optimization (PSO) algorithm
    Mohammed, Bakari
    Zohra, A. R. A. M. A. Fatima
    Omar, Ouledali
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (09): : 261 - 266